Tunnista kartioleikkaus $$$y = 4 - \left(x - 2\right)^{2}$$$
Aiheeseen liittyvät laskurit: Paraabelilaskin, Ympyrälaskin, Ellipsilaskin, Hyperbelilaskin
Syötteesi
Tunnista ja määritä kartioleikkauksen $$$y = 4 - \left(x - 2\right)^{2}$$$ ominaisuudet.
Ratkaisu
Kartiokäyrän yleinen yhtälö on $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.
Meidän tapauksessamme $$$A = 1$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = -4$$$, $$$E = 1$$$, $$$F = 0$$$.
Kartioleikkauksen diskriminantti on $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = -1$$$.
Seuraavaksi $$$B^{2} - 4 A C = 0$$$.
Koska $$$B^{2} - 4 A C = 0$$$, yhtälö kuvaa paraabelia.
Sen ominaisuuksien määrittämiseksi käytä parabola calculator.
Vastaus
$$$y = 4 - \left(x - 2\right)^{2}$$$A määrittelee paraabelin.
Yleinen muoto: $$$x^{2} - 4 x + y = 0$$$A.
Kuvaaja: katso graphing calculator.