Tunnista kartioleikkaus $$$7 x^{2} - 14 x - 66 = -10$$$
Aiheeseen liittyvät laskurit: Paraabelilaskin, Ympyrälaskin, Ellipsilaskin, Hyperbelilaskin
Syötteesi
Tunnista ja määritä kartioleikkauksen $$$7 x^{2} - 14 x - 66 = -10$$$ ominaisuudet.
Ratkaisu
Kartiokäyrän yleinen yhtälö on $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.
Meidän tapauksessamme $$$A = 7$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = -14$$$, $$$E = 0$$$, $$$F = -56$$$.
Kartioleikkauksen diskriminantti on $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 0$$$.
Seuraavaksi $$$B^{2} - 4 A C = 0$$$.
Koska $$$\Delta = 0$$$, kyseessä on degeneroitunut kartioleikkaus.
Koska $$$B^{2} - 4 A C = 0$$$, yhtälö määrittää kaksi rinnakkaista suoraa.
Vastaus
$$$7 x^{2} - 14 x - 66 = -10$$$A määrittää suoraparin $$$x = -2$$$, $$$x = 4$$$A.
Yleinen muoto: $$$7 x^{2} - 14 x - 56 = 0$$$A.
Tekijämuoto: $$$\left(x - 4\right) \left(x + 2\right) = 0$$$A.
Kuvaaja: katso graphing calculator.