Simplifica $$$\left(\overline{A} \cdot C \cdot D\right) + \left(\overline{A} \cdot \overline{C} \cdot \overline{D}\right)$$$
Calculadora relacionada: Calculadora de tablas de verdad
Tu entrada
Simplifica la expresión booleana $$$\left(\overline{A} \cdot C \cdot D\right) + \left(\overline{A} \cdot \overline{C} \cdot \overline{D}\right).$$$
Solución
Reescribir:
$${\color{red}\left(\overline{A} \cdot C \cdot D\right) + \left(\overline{A} \cdot \overline{C} \cdot \overline{D}\right)} = {\color{red}\left(\left(C \cdot D\right) + \left(\overline{C} \cdot \overline{D}\right)\right) \cdot \overline{A}}$$Simplificar más:
$${\color{red}\left(\left(C \cdot D\right) + \left(\overline{C} \cdot \overline{D}\right)\right) \cdot \overline{A}} = {\color{red}\overline{A} \cdot \left(C + \overline{D}\right) \cdot \left(D + \overline{C}\right)}$$Respuesta
$$$\left(\overline{A} \cdot C \cdot D\right) + \left(\overline{A} \cdot \overline{C} \cdot \overline{D}\right) = \overline{A} \cdot \left(C + \overline{D}\right) \cdot \left(D + \overline{C}\right)$$$
Please try a new game Rotatly