Simplify $$$\left(\overline{A} \cdot C \cdot D\right) + \left(\overline{A} \cdot \overline{C} \cdot \overline{D}\right)$$$
Related calculator: Truth Table Calculator
Your Input
Simplify the boolean expression $$$\left(\overline{A} \cdot C \cdot D\right) + \left(\overline{A} \cdot \overline{C} \cdot \overline{D}\right).$$$
Solution
Rewrite:
$${\color{red}\left(\overline{A} \cdot C \cdot D\right) + \left(\overline{A} \cdot \overline{C} \cdot \overline{D}\right)} = {\color{red}\left(\left(C \cdot D\right) + \left(\overline{C} \cdot \overline{D}\right)\right) \cdot \overline{A}}$$Simplify further:
$${\color{red}\left(\left(C \cdot D\right) + \left(\overline{C} \cdot \overline{D}\right)\right) \cdot \overline{A}} = {\color{red}\overline{A} \cdot \left(C + \overline{D}\right) \cdot \left(D + \overline{C}\right)}$$Answer
$$$\left(\overline{A} \cdot C \cdot D\right) + \left(\overline{A} \cdot \overline{C} \cdot \overline{D}\right) = \overline{A} \cdot \left(C + \overline{D}\right) \cdot \left(D + \overline{C}\right)$$$
Please try a new game Rotatly