Integral de $$$\frac{1}{x y^{2}}$$$ con respecto a $$$x$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{1}{x y^{2}}\, dx$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{y^{2}}$$$ y $$$f{\left(x \right)} = \frac{1}{x}$$$:
$${\color{red}{\int{\frac{1}{x y^{2}} d x}}} = {\color{red}{\frac{\int{\frac{1}{x} d x}}{y^{2}}}}$$
La integral de $$$\frac{1}{x}$$$ es $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{x} d x}}}}{y^{2}} = \frac{{\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{y^{2}}$$
Por lo tanto,
$$\int{\frac{1}{x y^{2}} d x} = \frac{\ln{\left(\left|{x}\right| \right)}}{y^{2}}$$
Añade la constante de integración:
$$\int{\frac{1}{x y^{2}} d x} = \frac{\ln{\left(\left|{x}\right| \right)}}{y^{2}}+C$$
Respuesta
$$$\int \frac{1}{x y^{2}}\, dx = \frac{\ln\left(\left|{x}\right|\right)}{y^{2}} + C$$$A