Derivada de $$$\sin^{2}{\left(2 x \right)}$$$
Calculadoras relacionadas: Calculadora de diferenciación logarítmica, Calculadora de derivación implícita con pasos
Tu entrada
Halla $$$\frac{d}{dx} \left(\sin^{2}{\left(2 x \right)}\right)$$$.
Solución
La función $$$\sin^{2}{\left(2 x \right)}$$$ es la composición $$$f{\left(g{\left(x \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = u^{2}$$$ y $$$g{\left(x \right)} = \sin{\left(2 x \right)}$$$.
Aplica la regla de la cadena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sin^{2}{\left(2 x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(\sin{\left(2 x \right)}\right)\right)}$$Aplica la regla de la potencia $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ con $$$n = 2$$$:
$${\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(\sin{\left(2 x \right)}\right) = {\color{red}\left(2 u\right)} \frac{d}{dx} \left(\sin{\left(2 x \right)}\right)$$Volver a la variable original:
$$2 {\color{red}\left(u\right)} \frac{d}{dx} \left(\sin{\left(2 x \right)}\right) = 2 {\color{red}\left(\sin{\left(2 x \right)}\right)} \frac{d}{dx} \left(\sin{\left(2 x \right)}\right)$$La función $$$\sin{\left(2 x \right)}$$$ es la composición $$$f{\left(g{\left(x \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ y $$$g{\left(x \right)} = 2 x$$$.
Aplica la regla de la cadena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$$2 \sin{\left(2 x \right)} {\color{red}\left(\frac{d}{dx} \left(\sin{\left(2 x \right)}\right)\right)} = 2 \sin{\left(2 x \right)} {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(2 x\right)\right)}$$La derivada del seno es $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$$2 \sin{\left(2 x \right)} {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(2 x\right) = 2 \sin{\left(2 x \right)} {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(2 x\right)$$Volver a la variable original:
$$2 \sin{\left(2 x \right)} \cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(2 x\right) = 2 \sin{\left(2 x \right)} \cos{\left({\color{red}\left(2 x\right)} \right)} \frac{d}{dx} \left(2 x\right)$$Aplica la regla del factor constante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = 2$$$ y $$$f{\left(x \right)} = x$$$:
$$2 \sin{\left(2 x \right)} \cos{\left(2 x \right)} {\color{red}\left(\frac{d}{dx} \left(2 x\right)\right)} = 2 \sin{\left(2 x \right)} \cos{\left(2 x \right)} {\color{red}\left(2 \frac{d}{dx} \left(x\right)\right)}$$Aplica la regla de la potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 1$$$, en otras palabras, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$4 \sin{\left(2 x \right)} \cos{\left(2 x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 4 \sin{\left(2 x \right)} \cos{\left(2 x \right)} {\color{red}\left(1\right)}$$Simplificar:
$$4 \sin{\left(2 x \right)} \cos{\left(2 x \right)} = 2 \sin{\left(4 x \right)}$$Por lo tanto, $$$\frac{d}{dx} \left(\sin^{2}{\left(2 x \right)}\right) = 2 \sin{\left(4 x \right)}$$$.
Respuesta
$$$\frac{d}{dx} \left(\sin^{2}{\left(2 x \right)}\right) = 2 \sin{\left(4 x \right)}$$$A