$$$\sin^{2}{\left(2 x \right)}$$$的导数
您的输入
求$$$\frac{d}{dx} \left(\sin^{2}{\left(2 x \right)}\right)$$$。
解答
函数$$$\sin^{2}{\left(2 x \right)}$$$是两个函数$$$f{\left(u \right)} = u^{2}$$$和$$$g{\left(x \right)} = \sin{\left(2 x \right)}$$$的复合$$$f{\left(g{\left(x \right)} \right)}$$$。
应用链式法则 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sin^{2}{\left(2 x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(\sin{\left(2 x \right)}\right)\right)}$$应用幂次法则 $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$,其中 $$$n = 2$$$:
$${\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(\sin{\left(2 x \right)}\right) = {\color{red}\left(2 u\right)} \frac{d}{dx} \left(\sin{\left(2 x \right)}\right)$$返回到原变量:
$$2 {\color{red}\left(u\right)} \frac{d}{dx} \left(\sin{\left(2 x \right)}\right) = 2 {\color{red}\left(\sin{\left(2 x \right)}\right)} \frac{d}{dx} \left(\sin{\left(2 x \right)}\right)$$函数$$$\sin{\left(2 x \right)}$$$是两个函数$$$f{\left(u \right)} = \sin{\left(u \right)}$$$和$$$g{\left(x \right)} = 2 x$$$的复合$$$f{\left(g{\left(x \right)} \right)}$$$。
应用链式法则 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$$2 \sin{\left(2 x \right)} {\color{red}\left(\frac{d}{dx} \left(\sin{\left(2 x \right)}\right)\right)} = 2 \sin{\left(2 x \right)} {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(2 x\right)\right)}$$正弦函数的导数为 $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$$2 \sin{\left(2 x \right)} {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(2 x\right) = 2 \sin{\left(2 x \right)} {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(2 x\right)$$返回到原变量:
$$2 \sin{\left(2 x \right)} \cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(2 x\right) = 2 \sin{\left(2 x \right)} \cos{\left({\color{red}\left(2 x\right)} \right)} \frac{d}{dx} \left(2 x\right)$$对 $$$c = 2$$$ 和 $$$f{\left(x \right)} = x$$$ 应用常数倍法则 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$:
$$2 \sin{\left(2 x \right)} \cos{\left(2 x \right)} {\color{red}\left(\frac{d}{dx} \left(2 x\right)\right)} = 2 \sin{\left(2 x \right)} \cos{\left(2 x \right)} {\color{red}\left(2 \frac{d}{dx} \left(x\right)\right)}$$应用幂法则 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{dx} \left(x\right) = 1$$$:
$$4 \sin{\left(2 x \right)} \cos{\left(2 x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 4 \sin{\left(2 x \right)} \cos{\left(2 x \right)} {\color{red}\left(1\right)}$$化简:
$$4 \sin{\left(2 x \right)} \cos{\left(2 x \right)} = 2 \sin{\left(4 x \right)}$$因此,$$$\frac{d}{dx} \left(\sin^{2}{\left(2 x \right)}\right) = 2 \sin{\left(4 x \right)}$$$。
答案
$$$\frac{d}{dx} \left(\sin^{2}{\left(2 x \right)}\right) = 2 \sin{\left(4 x \right)}$$$A