Μέτρο του $$$\left\langle i a g h m n r s t^{2} e^{e i n o r s^{2}}\right\rangle$$$
Η είσοδός σας
Βρείτε το μέτρο (μήκος) του $$$\mathbf{\vec{u}} = \left\langle i a g h m n r s t^{2} e^{e i n o r s^{2}}\right\rangle$$$.
Λύση
Το μέτρο ενός διανύσματος δίνεται από τον τύπο $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.
Το άθροισμα των τετραγώνων των απόλυτων τιμών των συντεταγμένων είναι $$$\left|{i a g h m n r s t^{2} e^{e i n o r s^{2}}}\right|^{2} = a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4}$$$.
Επομένως, το μέτρο του διανύσματος είναι $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4}} = t^{2} \left|{a g h m n r s}\right|.$$$
Απάντηση
Το μέτρο είναι $$$t^{2} \left|{a g h m n r s}\right|$$$A.
Please try a new game Rotatly