Ολοκλήρωμα του $$$4 t^{2} - 11$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \left(4 t^{2} - 11\right)\, dt$$$.
Λύση
Ολοκληρώστε όρο προς όρο:
$${\color{red}{\int{\left(4 t^{2} - 11\right)d t}}} = {\color{red}{\left(- \int{11 d t} + \int{4 t^{2} d t}\right)}}$$
Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dt = c t$$$ με $$$c=11$$$:
$$\int{4 t^{2} d t} - {\color{red}{\int{11 d t}}} = \int{4 t^{2} d t} - {\color{red}{\left(11 t\right)}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ με $$$c=4$$$ και $$$f{\left(t \right)} = t^{2}$$$:
$$- 11 t + {\color{red}{\int{4 t^{2} d t}}} = - 11 t + {\color{red}{\left(4 \int{t^{2} d t}\right)}}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=2$$$:
$$- 11 t + 4 {\color{red}{\int{t^{2} d t}}}=- 11 t + 4 {\color{red}{\frac{t^{1 + 2}}{1 + 2}}}=- 11 t + 4 {\color{red}{\left(\frac{t^{3}}{3}\right)}}$$
Επομένως,
$$\int{\left(4 t^{2} - 11\right)d t} = \frac{4 t^{3}}{3} - 11 t$$
Απλοποιήστε:
$$\int{\left(4 t^{2} - 11\right)d t} = \frac{t \left(4 t^{2} - 33\right)}{3}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\left(4 t^{2} - 11\right)d t} = \frac{t \left(4 t^{2} - 33\right)}{3}+C$$
Απάντηση
$$$\int \left(4 t^{2} - 11\right)\, dt = \frac{t \left(4 t^{2} - 33\right)}{3} + C$$$A