$$$4 t^{2} - 11$$$의 적분
사용자 입력
$$$\int \left(4 t^{2} - 11\right)\, dt$$$을(를) 구하시오.
풀이
각 항별로 적분하십시오:
$${\color{red}{\int{\left(4 t^{2} - 11\right)d t}}} = {\color{red}{\left(- \int{11 d t} + \int{4 t^{2} d t}\right)}}$$
상수 법칙 $$$\int c\, dt = c t$$$을 $$$c=11$$$에 적용하십시오:
$$\int{4 t^{2} d t} - {\color{red}{\int{11 d t}}} = \int{4 t^{2} d t} - {\color{red}{\left(11 t\right)}}$$
상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$을 $$$c=4$$$와 $$$f{\left(t \right)} = t^{2}$$$에 적용하세요:
$$- 11 t + {\color{red}{\int{4 t^{2} d t}}} = - 11 t + {\color{red}{\left(4 \int{t^{2} d t}\right)}}$$
멱법칙($$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:
$$- 11 t + 4 {\color{red}{\int{t^{2} d t}}}=- 11 t + 4 {\color{red}{\frac{t^{1 + 2}}{1 + 2}}}=- 11 t + 4 {\color{red}{\left(\frac{t^{3}}{3}\right)}}$$
따라서,
$$\int{\left(4 t^{2} - 11\right)d t} = \frac{4 t^{3}}{3} - 11 t$$
간단히 하시오:
$$\int{\left(4 t^{2} - 11\right)d t} = \frac{t \left(4 t^{2} - 33\right)}{3}$$
적분 상수를 추가하세요:
$$\int{\left(4 t^{2} - 11\right)d t} = \frac{t \left(4 t^{2} - 33\right)}{3}+C$$
정답
$$$\int \left(4 t^{2} - 11\right)\, dt = \frac{t \left(4 t^{2} - 33\right)}{3} + C$$$A