Integral de $$$4 t^{2} - 11$$$

La calculadora encontrará la integral/antiderivada de $$$4 t^{2} - 11$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \left(4 t^{2} - 11\right)\, dt$$$.

Solución

Integra término a término:

$${\color{red}{\int{\left(4 t^{2} - 11\right)d t}}} = {\color{red}{\left(- \int{11 d t} + \int{4 t^{2} d t}\right)}}$$

Aplica la regla de la constante $$$\int c\, dt = c t$$$ con $$$c=11$$$:

$$\int{4 t^{2} d t} - {\color{red}{\int{11 d t}}} = \int{4 t^{2} d t} - {\color{red}{\left(11 t\right)}}$$

Aplica la regla del factor constante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=4$$$ y $$$f{\left(t \right)} = t^{2}$$$:

$$- 11 t + {\color{red}{\int{4 t^{2} d t}}} = - 11 t + {\color{red}{\left(4 \int{t^{2} d t}\right)}}$$

Aplica la regla de la potencia $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:

$$- 11 t + 4 {\color{red}{\int{t^{2} d t}}}=- 11 t + 4 {\color{red}{\frac{t^{1 + 2}}{1 + 2}}}=- 11 t + 4 {\color{red}{\left(\frac{t^{3}}{3}\right)}}$$

Por lo tanto,

$$\int{\left(4 t^{2} - 11\right)d t} = \frac{4 t^{3}}{3} - 11 t$$

Simplificar:

$$\int{\left(4 t^{2} - 11\right)d t} = \frac{t \left(4 t^{2} - 33\right)}{3}$$

Añade la constante de integración:

$$\int{\left(4 t^{2} - 11\right)d t} = \frac{t \left(4 t^{2} - 33\right)}{3}+C$$

Respuesta

$$$\int \left(4 t^{2} - 11\right)\, dt = \frac{t \left(4 t^{2} - 33\right)}{3} + C$$$A


Please try a new game Rotatly