Ολοκλήρωμα του $$$e^{3 x^{2}}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$e^{3 x^{2}}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int e^{3 x^{2}}\, dx$$$.

Λύση

Έστω $$$u=\sqrt{3} x$$$.

Τότε $$$du=\left(\sqrt{3} x\right)^{\prime }dx = \sqrt{3} dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = \frac{\sqrt{3} du}{3}$$$.

Επομένως,

$${\color{red}{\int{e^{3 x^{2}} d x}}} = {\color{red}{\int{\frac{\sqrt{3} e^{u^{2}}}{3} d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{\sqrt{3}}{3}$$$ και $$$f{\left(u \right)} = e^{u^{2}}$$$:

$${\color{red}{\int{\frac{\sqrt{3} e^{u^{2}}}{3} d u}}} = {\color{red}{\left(\frac{\sqrt{3} \int{e^{u^{2}} d u}}{3}\right)}}$$

Αυτό το ολοκλήρωμα (Φανταστική συνάρτηση σφάλματος) δεν έχει κλειστή μορφή:

$$\frac{\sqrt{3} {\color{red}{\int{e^{u^{2}} d u}}}}{3} = \frac{\sqrt{3} {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(u \right)}}{2}\right)}}}{3}$$

Θυμηθείτε ότι $$$u=\sqrt{3} x$$$:

$$\frac{\sqrt{3} \sqrt{\pi} \operatorname{erfi}{\left({\color{red}{u}} \right)}}{6} = \frac{\sqrt{3} \sqrt{\pi} \operatorname{erfi}{\left({\color{red}{\sqrt{3} x}} \right)}}{6}$$

Επομένως,

$$\int{e^{3 x^{2}} d x} = \frac{\sqrt{3} \sqrt{\pi} \operatorname{erfi}{\left(\sqrt{3} x \right)}}{6}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{e^{3 x^{2}} d x} = \frac{\sqrt{3} \sqrt{\pi} \operatorname{erfi}{\left(\sqrt{3} x \right)}}{6}+C$$

Απάντηση

$$$\int e^{3 x^{2}}\, dx = \frac{\sqrt{3} \sqrt{\pi} \operatorname{erfi}{\left(\sqrt{3} x \right)}}{6} + C$$$A


Please try a new game Rotatly