Integrale di $$$e^{3 x^{2}}$$$

La calcolatrice troverà l'integrale/primitiva di $$$e^{3 x^{2}}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int e^{3 x^{2}}\, dx$$$.

Soluzione

Sia $$$u=\sqrt{3} x$$$.

Quindi $$$du=\left(\sqrt{3} x\right)^{\prime }dx = \sqrt{3} dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = \frac{\sqrt{3} du}{3}$$$.

Quindi,

$${\color{red}{\int{e^{3 x^{2}} d x}}} = {\color{red}{\int{\frac{\sqrt{3} e^{u^{2}}}{3} d u}}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{\sqrt{3}}{3}$$$ e $$$f{\left(u \right)} = e^{u^{2}}$$$:

$${\color{red}{\int{\frac{\sqrt{3} e^{u^{2}}}{3} d u}}} = {\color{red}{\left(\frac{\sqrt{3} \int{e^{u^{2}} d u}}{3}\right)}}$$

Questo integrale (Funzione di errore immaginaria) non ha una forma chiusa:

$$\frac{\sqrt{3} {\color{red}{\int{e^{u^{2}} d u}}}}{3} = \frac{\sqrt{3} {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(u \right)}}{2}\right)}}}{3}$$

Ricordiamo che $$$u=\sqrt{3} x$$$:

$$\frac{\sqrt{3} \sqrt{\pi} \operatorname{erfi}{\left({\color{red}{u}} \right)}}{6} = \frac{\sqrt{3} \sqrt{\pi} \operatorname{erfi}{\left({\color{red}{\sqrt{3} x}} \right)}}{6}$$

Pertanto,

$$\int{e^{3 x^{2}} d x} = \frac{\sqrt{3} \sqrt{\pi} \operatorname{erfi}{\left(\sqrt{3} x \right)}}{6}$$

Aggiungi la costante di integrazione:

$$\int{e^{3 x^{2}} d x} = \frac{\sqrt{3} \sqrt{\pi} \operatorname{erfi}{\left(\sqrt{3} x \right)}}{6}+C$$

Risposta

$$$\int e^{3 x^{2}}\, dx = \frac{\sqrt{3} \sqrt{\pi} \operatorname{erfi}{\left(\sqrt{3} x \right)}}{6} + C$$$A


Please try a new game Rotatly