Ολοκλήρωμα του $$$50 e^{- 2 t}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$50 e^{- 2 t}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int 50 e^{- 2 t}\, dt$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ με $$$c=50$$$ και $$$f{\left(t \right)} = e^{- 2 t}$$$:

$${\color{red}{\int{50 e^{- 2 t} d t}}} = {\color{red}{\left(50 \int{e^{- 2 t} d t}\right)}}$$

Έστω $$$u=- 2 t$$$.

Τότε $$$du=\left(- 2 t\right)^{\prime }dt = - 2 dt$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dt = - \frac{du}{2}$$$.

Το ολοκλήρωμα μπορεί να επαναγραφεί ως

$$50 {\color{red}{\int{e^{- 2 t} d t}}} = 50 {\color{red}{\int{\left(- \frac{e^{u}}{2}\right)d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=- \frac{1}{2}$$$ και $$$f{\left(u \right)} = e^{u}$$$:

$$50 {\color{red}{\int{\left(- \frac{e^{u}}{2}\right)d u}}} = 50 {\color{red}{\left(- \frac{\int{e^{u} d u}}{2}\right)}}$$

Το ολοκλήρωμα της εκθετικής συνάρτησης είναι $$$\int{e^{u} d u} = e^{u}$$$:

$$- 25 {\color{red}{\int{e^{u} d u}}} = - 25 {\color{red}{e^{u}}}$$

Θυμηθείτε ότι $$$u=- 2 t$$$:

$$- 25 e^{{\color{red}{u}}} = - 25 e^{{\color{red}{\left(- 2 t\right)}}}$$

Επομένως,

$$\int{50 e^{- 2 t} d t} = - 25 e^{- 2 t}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{50 e^{- 2 t} d t} = - 25 e^{- 2 t}+C$$

Απάντηση

$$$\int 50 e^{- 2 t}\, dt = - 25 e^{- 2 t} + C$$$A


Please try a new game Rotatly