Ολοκλήρωμα του $$$3 x^{4} e^{x^{5}}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$3 x^{4} e^{x^{5}}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int 3 x^{4} e^{x^{5}}\, dx$$$.

Λύση

Έστω $$$u=x^{5}$$$.

Τότε $$$du=\left(x^{5}\right)^{\prime }dx = 5 x^{4} dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$x^{4} dx = \frac{du}{5}$$$.

Επομένως,

$${\color{red}{\int{3 x^{4} e^{x^{5}} d x}}} = {\color{red}{\int{\frac{3 e^{u}}{5} d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{3}{5}$$$ και $$$f{\left(u \right)} = e^{u}$$$:

$${\color{red}{\int{\frac{3 e^{u}}{5} d u}}} = {\color{red}{\left(\frac{3 \int{e^{u} d u}}{5}\right)}}$$

Το ολοκλήρωμα της εκθετικής συνάρτησης είναι $$$\int{e^{u} d u} = e^{u}$$$:

$$\frac{3 {\color{red}{\int{e^{u} d u}}}}{5} = \frac{3 {\color{red}{e^{u}}}}{5}$$

Θυμηθείτε ότι $$$u=x^{5}$$$:

$$\frac{3 e^{{\color{red}{u}}}}{5} = \frac{3 e^{{\color{red}{x^{5}}}}}{5}$$

Επομένως,

$$\int{3 x^{4} e^{x^{5}} d x} = \frac{3 e^{x^{5}}}{5}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{3 x^{4} e^{x^{5}} d x} = \frac{3 e^{x^{5}}}{5}+C$$

Απάντηση

$$$\int 3 x^{4} e^{x^{5}}\, dx = \frac{3 e^{x^{5}}}{5} + C$$$A


Please try a new game Rotatly