Προσδιορίστε την κωνική τομή $$$\frac{11 x y}{10} = \frac{26}{25}$$$
Σχετικοί υπολογιστές: Υπολογιστής παραβολής, Υπολογιστής Κύκλου, Υπολογιστής έλλειψης, Υπολογιστής υπερβολής
Η είσοδός σας
Αναγνωρίστε την κωνική τομή $$$\frac{11 x y}{10} = \frac{26}{25}$$$ και βρείτε τις ιδιότητές της.
Λύση
Η γενική εξίσωση μιας κωνικής τομής είναι $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.
Στην περίπτωσή μας, $$$A = 0$$$, $$$B = \frac{11}{10}$$$, $$$C = 0$$$, $$$D = 0$$$, $$$E = 0$$$, $$$F = - \frac{26}{25}$$$.
Η διακρίνουσα της κωνικής τομής είναι $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = \frac{1573}{1250}$$$.
Στη συνέχεια, $$$B^{2} - 4 A C = \frac{121}{100}$$$.
Εφόσον $$$B^{2} - 4 A C \gt 0$$$, η εξίσωση παριστάνει υπερβολή.
Για να βρείτε τις ιδιότητές της, χρησιμοποιήστε τον υπολογιστή υπερβολής.
Απάντηση
$$$\frac{11 x y}{10} = \frac{26}{25}$$$A παριστάνει μια υπερβολή.
Γενική μορφή: $$$\frac{11 x y}{10} - \frac{26}{25} = 0$$$A.
Γράφημα: δείτε το graphing calculator.