Integral von $$$x \sin^{2}{\left(x \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int x \sin^{2}{\left(x \right)}\, dx$$$.
Lösung
Wende die Potenzreduktionsformel $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ mit $$$\alpha=x$$$ an:
$${\color{red}{\int{x \sin^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{x \left(1 - \cos{\left(2 x \right)}\right)}{2} d x}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(x \right)} = x \left(1 - \cos{\left(2 x \right)}\right)$$$ an:
$${\color{red}{\int{\frac{x \left(1 - \cos{\left(2 x \right)}\right)}{2} d x}}} = {\color{red}{\left(\frac{\int{x \left(1 - \cos{\left(2 x \right)}\right) d x}}{2}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{x \left(1 - \cos{\left(2 x \right)}\right) d x}}}}{2} = \frac{{\color{red}{\int{\left(- x \cos{\left(2 x \right)} + x\right)d x}}}}{2}$$
Gliedweise integrieren:
$$\frac{{\color{red}{\int{\left(- x \cos{\left(2 x \right)} + x\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{x d x} - \int{x \cos{\left(2 x \right)} d x}\right)}}}{2}$$
Wenden Sie die Potenzregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=1$$$ an:
$$- \frac{\int{x \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{x d x}}}}{2}=- \frac{\int{x \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{2}=- \frac{\int{x \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{x^{2}}{2}\right)}}}{2}$$
Für das Integral $$$\int{x \cos{\left(2 x \right)} d x}$$$ verwenden Sie die partielle Integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Seien $$$\operatorname{u}=x$$$ und $$$\operatorname{dv}=\cos{\left(2 x \right)} dx$$$.
Dann gilt $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (Rechenschritte siehe ») und $$$\operatorname{v}=\int{\cos{\left(2 x \right)} d x}=\frac{\sin{\left(2 x \right)}}{2}$$$ (Rechenschritte siehe »).
Das Integral wird zu
$$\frac{x^{2}}{4} - \frac{{\color{red}{\int{x \cos{\left(2 x \right)} d x}}}}{2}=\frac{x^{2}}{4} - \frac{{\color{red}{\left(x \cdot \frac{\sin{\left(2 x \right)}}{2}-\int{\frac{\sin{\left(2 x \right)}}{2} \cdot 1 d x}\right)}}}{2}=\frac{x^{2}}{4} - \frac{{\color{red}{\left(\frac{x \sin{\left(2 x \right)}}{2} - \int{\frac{\sin{\left(2 x \right)}}{2} d x}\right)}}}{2}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(x \right)} = \sin{\left(2 x \right)}$$$ an:
$$\frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}}}{2} = \frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(2 x \right)} d x}}{2}\right)}}}{2}$$
Sei $$$u=2 x$$$.
Dann $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = \frac{du}{2}$$$.
Das Integral wird zu
$$\frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{4} = \frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{4}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ an:
$$\frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{4} = \frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{4}$$
Das Integral des Sinus lautet $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{8} = \frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{8}$$
Zur Erinnerung: $$$u=2 x$$$:
$$\frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} - \frac{\cos{\left({\color{red}{u}} \right)}}{8} = \frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} - \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{8}$$
Daher,
$$\int{x \sin^{2}{\left(x \right)} d x} = \frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} - \frac{\cos{\left(2 x \right)}}{8}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{x \sin^{2}{\left(x \right)} d x} = \frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} - \frac{\cos{\left(2 x \right)}}{8}+C$$
Antwort
$$$\int x \sin^{2}{\left(x \right)}\, dx = \left(\frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} - \frac{\cos{\left(2 x \right)}}{8}\right) + C$$$A