Integral de $$$x \sin^{2}{\left(x \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int x \sin^{2}{\left(x \right)}\, dx$$$.
Solución
Aplica la fórmula de reducción de potencia $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ con $$$\alpha=x$$$:
$${\color{red}{\int{x \sin^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{x \left(1 - \cos{\left(2 x \right)}\right)}{2} d x}}}$$
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(x \right)} = x \left(1 - \cos{\left(2 x \right)}\right)$$$:
$${\color{red}{\int{\frac{x \left(1 - \cos{\left(2 x \right)}\right)}{2} d x}}} = {\color{red}{\left(\frac{\int{x \left(1 - \cos{\left(2 x \right)}\right) d x}}{2}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{x \left(1 - \cos{\left(2 x \right)}\right) d x}}}}{2} = \frac{{\color{red}{\int{\left(- x \cos{\left(2 x \right)} + x\right)d x}}}}{2}$$
Integra término a término:
$$\frac{{\color{red}{\int{\left(- x \cos{\left(2 x \right)} + x\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{x d x} - \int{x \cos{\left(2 x \right)} d x}\right)}}}{2}$$
Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:
$$- \frac{\int{x \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{x d x}}}}{2}=- \frac{\int{x \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{2}=- \frac{\int{x \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{x^{2}}{2}\right)}}}{2}$$
Para la integral $$$\int{x \cos{\left(2 x \right)} d x}$$$, utiliza la integración por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Sean $$$\operatorname{u}=x$$$ y $$$\operatorname{dv}=\cos{\left(2 x \right)} dx$$$.
Entonces $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (los pasos pueden verse ») y $$$\operatorname{v}=\int{\cos{\left(2 x \right)} d x}=\frac{\sin{\left(2 x \right)}}{2}$$$ (los pasos pueden verse »).
Por lo tanto,
$$\frac{x^{2}}{4} - \frac{{\color{red}{\int{x \cos{\left(2 x \right)} d x}}}}{2}=\frac{x^{2}}{4} - \frac{{\color{red}{\left(x \cdot \frac{\sin{\left(2 x \right)}}{2}-\int{\frac{\sin{\left(2 x \right)}}{2} \cdot 1 d x}\right)}}}{2}=\frac{x^{2}}{4} - \frac{{\color{red}{\left(\frac{x \sin{\left(2 x \right)}}{2} - \int{\frac{\sin{\left(2 x \right)}}{2} d x}\right)}}}{2}$$
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(x \right)} = \sin{\left(2 x \right)}$$$:
$$\frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}}}{2} = \frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(2 x \right)} d x}}{2}\right)}}}{2}$$
Sea $$$u=2 x$$$.
Entonces $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{2}$$$.
Por lo tanto,
$$\frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{4} = \frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{4}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$\frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{4} = \frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{4}$$
La integral del seno es $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{8} = \frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{8}$$
Recordemos que $$$u=2 x$$$:
$$\frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} - \frac{\cos{\left({\color{red}{u}} \right)}}{8} = \frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} - \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{8}$$
Por lo tanto,
$$\int{x \sin^{2}{\left(x \right)} d x} = \frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} - \frac{\cos{\left(2 x \right)}}{8}$$
Añade la constante de integración:
$$\int{x \sin^{2}{\left(x \right)} d x} = \frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} - \frac{\cos{\left(2 x \right)}}{8}+C$$
Respuesta
$$$\int x \sin^{2}{\left(x \right)}\, dx = \left(\frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} - \frac{\cos{\left(2 x \right)}}{8}\right) + C$$$A