Integral von $$$\ln\left(1 - x^{2}\right)$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \ln\left(1 - x^{2}\right)\, dx$$$.
Lösung
Für das Integral $$$\int{\ln{\left(1 - x^{2} \right)} d x}$$$ verwenden Sie die partielle Integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Seien $$$\operatorname{u}=\ln{\left(1 - x^{2} \right)}$$$ und $$$\operatorname{dv}=dx$$$.
Dann gilt $$$\operatorname{du}=\left(\ln{\left(1 - x^{2} \right)}\right)^{\prime }dx=\frac{2 x}{x^{2} - 1} dx$$$ (Rechenschritte siehe ») und $$$\operatorname{v}=\int{1 d x}=x$$$ (Rechenschritte siehe »).
Das Integral wird zu
$${\color{red}{\int{\ln{\left(1 - x^{2} \right)} d x}}}={\color{red}{\left(\ln{\left(1 - x^{2} \right)} \cdot x-\int{x \cdot \frac{2 x}{x^{2} - 1} d x}\right)}}={\color{red}{\left(x \ln{\left(1 - x^{2} \right)} - \int{\frac{2 x^{2}}{\left(x - 1\right) \left(x + 1\right)} d x}\right)}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=2$$$ und $$$f{\left(x \right)} = \frac{x^{2}}{\left(x - 1\right) \left(x + 1\right)}$$$ an:
$$x \ln{\left(1 - x^{2} \right)} - {\color{red}{\int{\frac{2 x^{2}}{\left(x - 1\right) \left(x + 1\right)} d x}}} = x \ln{\left(1 - x^{2} \right)} - {\color{red}{\left(2 \int{\frac{x^{2}}{\left(x - 1\right) \left(x + 1\right)} d x}\right)}}$$
Da der Grad des Zählers mindestens so groß ist wie der des Nenners, führen Sie eine Polynomdivision durch (die Schritte sind » zu sehen):
$$x \ln{\left(1 - x^{2} \right)} - 2 {\color{red}{\int{\frac{x^{2}}{\left(x - 1\right) \left(x + 1\right)} d x}}} = x \ln{\left(1 - x^{2} \right)} - 2 {\color{red}{\int{\left(1 + \frac{1}{\left(x - 1\right) \left(x + 1\right)}\right)d x}}}$$
Gliedweise integrieren:
$$x \ln{\left(1 - x^{2} \right)} - 2 {\color{red}{\int{\left(1 + \frac{1}{\left(x - 1\right) \left(x + 1\right)}\right)d x}}} = x \ln{\left(1 - x^{2} \right)} - 2 {\color{red}{\left(\int{1 d x} + \int{\frac{1}{\left(x - 1\right) \left(x + 1\right)} d x}\right)}}$$
Wenden Sie die Konstantenregel $$$\int c\, dx = c x$$$ mit $$$c=1$$$ an:
$$x \ln{\left(1 - x^{2} \right)} - 2 \int{\frac{1}{\left(x - 1\right) \left(x + 1\right)} d x} - 2 {\color{red}{\int{1 d x}}} = x \ln{\left(1 - x^{2} \right)} - 2 \int{\frac{1}{\left(x - 1\right) \left(x + 1\right)} d x} - 2 {\color{red}{x}}$$
Partialbruchzerlegung durchführen (die Schritte sind » zu sehen):
$$x \ln{\left(1 - x^{2} \right)} - 2 x - 2 {\color{red}{\int{\frac{1}{\left(x - 1\right) \left(x + 1\right)} d x}}} = x \ln{\left(1 - x^{2} \right)} - 2 x - 2 {\color{red}{\int{\left(- \frac{1}{2 \left(x + 1\right)} + \frac{1}{2 \left(x - 1\right)}\right)d x}}}$$
Gliedweise integrieren:
$$x \ln{\left(1 - x^{2} \right)} - 2 x - 2 {\color{red}{\int{\left(- \frac{1}{2 \left(x + 1\right)} + \frac{1}{2 \left(x - 1\right)}\right)d x}}} = x \ln{\left(1 - x^{2} \right)} - 2 x - 2 {\color{red}{\left(\int{\frac{1}{2 \left(x - 1\right)} d x} - \int{\frac{1}{2 \left(x + 1\right)} d x}\right)}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(x \right)} = \frac{1}{x - 1}$$$ an:
$$x \ln{\left(1 - x^{2} \right)} - 2 x + 2 \int{\frac{1}{2 \left(x + 1\right)} d x} - 2 {\color{red}{\int{\frac{1}{2 \left(x - 1\right)} d x}}} = x \ln{\left(1 - x^{2} \right)} - 2 x + 2 \int{\frac{1}{2 \left(x + 1\right)} d x} - 2 {\color{red}{\left(\frac{\int{\frac{1}{x - 1} d x}}{2}\right)}}$$
Sei $$$u=x - 1$$$.
Dann $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = du$$$.
Somit,
$$x \ln{\left(1 - x^{2} \right)} - 2 x + 2 \int{\frac{1}{2 \left(x + 1\right)} d x} - {\color{red}{\int{\frac{1}{x - 1} d x}}} = x \ln{\left(1 - x^{2} \right)} - 2 x + 2 \int{\frac{1}{2 \left(x + 1\right)} d x} - {\color{red}{\int{\frac{1}{u} d u}}}$$
Das Integral von $$$\frac{1}{u}$$$ ist $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$x \ln{\left(1 - x^{2} \right)} - 2 x + 2 \int{\frac{1}{2 \left(x + 1\right)} d x} - {\color{red}{\int{\frac{1}{u} d u}}} = x \ln{\left(1 - x^{2} \right)} - 2 x + 2 \int{\frac{1}{2 \left(x + 1\right)} d x} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Zur Erinnerung: $$$u=x - 1$$$:
$$x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} + 2 \int{\frac{1}{2 \left(x + 1\right)} d x} = x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)} + 2 \int{\frac{1}{2 \left(x + 1\right)} d x}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(x \right)} = \frac{1}{x + 1}$$$ an:
$$x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{x - 1}\right| \right)} + 2 {\color{red}{\int{\frac{1}{2 \left(x + 1\right)} d x}}} = x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{x - 1}\right| \right)} + 2 {\color{red}{\left(\frac{\int{\frac{1}{x + 1} d x}}{2}\right)}}$$
Sei $$$u=x + 1$$$.
Dann $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = du$$$.
Das Integral lässt sich umschreiben als
$$x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{x - 1}\right| \right)} + {\color{red}{\int{\frac{1}{x + 1} d x}}} = x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{x - 1}\right| \right)} + {\color{red}{\int{\frac{1}{u} d u}}}$$
Das Integral von $$$\frac{1}{u}$$$ ist $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{x - 1}\right| \right)} + {\color{red}{\int{\frac{1}{u} d u}}} = x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{x - 1}\right| \right)} + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Zur Erinnerung: $$$u=x + 1$$$:
$$x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}$$
Daher,
$$\int{\ln{\left(1 - x^{2} \right)} d x} = x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{x + 1}\right| \right)}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\ln{\left(1 - x^{2} \right)} d x} = x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{x + 1}\right| \right)}+C$$
Antwort
$$$\int \ln\left(1 - x^{2}\right)\, dx = \left(x \ln\left(1 - x^{2}\right) - 2 x - \ln\left(\left|{x - 1}\right|\right) + \ln\left(\left|{x + 1}\right|\right)\right) + C$$$A