Integral dari $$$\ln\left(1 - x^{2}\right)$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\ln\left(1 - x^{2}\right)$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \ln\left(1 - x^{2}\right)\, dx$$$.

Solusi

Untuk integral $$$\int{\ln{\left(1 - x^{2} \right)} d x}$$$, gunakan integrasi parsial $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Misalkan $$$\operatorname{u}=\ln{\left(1 - x^{2} \right)}$$$ dan $$$\operatorname{dv}=dx$$$.

Maka $$$\operatorname{du}=\left(\ln{\left(1 - x^{2} \right)}\right)^{\prime }dx=\frac{2 x}{x^{2} - 1} dx$$$ (langkah-langkah dapat dilihat di ») dan $$$\operatorname{v}=\int{1 d x}=x$$$ (langkah-langkah dapat dilihat di »).

Oleh karena itu,

$${\color{red}{\int{\ln{\left(1 - x^{2} \right)} d x}}}={\color{red}{\left(\ln{\left(1 - x^{2} \right)} \cdot x-\int{x \cdot \frac{2 x}{x^{2} - 1} d x}\right)}}={\color{red}{\left(x \ln{\left(1 - x^{2} \right)} - \int{\frac{2 x^{2}}{\left(x - 1\right) \left(x + 1\right)} d x}\right)}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=2$$$ dan $$$f{\left(x \right)} = \frac{x^{2}}{\left(x - 1\right) \left(x + 1\right)}$$$:

$$x \ln{\left(1 - x^{2} \right)} - {\color{red}{\int{\frac{2 x^{2}}{\left(x - 1\right) \left(x + 1\right)} d x}}} = x \ln{\left(1 - x^{2} \right)} - {\color{red}{\left(2 \int{\frac{x^{2}}{\left(x - 1\right) \left(x + 1\right)} d x}\right)}}$$

Karena derajat pembilang tidak kurang dari derajat penyebut, lakukan pembagian panjang polinom (langkah-langkah dapat dilihat »):

$$x \ln{\left(1 - x^{2} \right)} - 2 {\color{red}{\int{\frac{x^{2}}{\left(x - 1\right) \left(x + 1\right)} d x}}} = x \ln{\left(1 - x^{2} \right)} - 2 {\color{red}{\int{\left(1 + \frac{1}{\left(x - 1\right) \left(x + 1\right)}\right)d x}}}$$

Integralkan suku demi suku:

$$x \ln{\left(1 - x^{2} \right)} - 2 {\color{red}{\int{\left(1 + \frac{1}{\left(x - 1\right) \left(x + 1\right)}\right)d x}}} = x \ln{\left(1 - x^{2} \right)} - 2 {\color{red}{\left(\int{1 d x} + \int{\frac{1}{\left(x - 1\right) \left(x + 1\right)} d x}\right)}}$$

Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=1$$$:

$$x \ln{\left(1 - x^{2} \right)} - 2 \int{\frac{1}{\left(x - 1\right) \left(x + 1\right)} d x} - 2 {\color{red}{\int{1 d x}}} = x \ln{\left(1 - x^{2} \right)} - 2 \int{\frac{1}{\left(x - 1\right) \left(x + 1\right)} d x} - 2 {\color{red}{x}}$$

Lakukan dekomposisi pecahan parsial (langkah-langkah dapat dilihat di »):

$$x \ln{\left(1 - x^{2} \right)} - 2 x - 2 {\color{red}{\int{\frac{1}{\left(x - 1\right) \left(x + 1\right)} d x}}} = x \ln{\left(1 - x^{2} \right)} - 2 x - 2 {\color{red}{\int{\left(- \frac{1}{2 \left(x + 1\right)} + \frac{1}{2 \left(x - 1\right)}\right)d x}}}$$

Integralkan suku demi suku:

$$x \ln{\left(1 - x^{2} \right)} - 2 x - 2 {\color{red}{\int{\left(- \frac{1}{2 \left(x + 1\right)} + \frac{1}{2 \left(x - 1\right)}\right)d x}}} = x \ln{\left(1 - x^{2} \right)} - 2 x - 2 {\color{red}{\left(\int{\frac{1}{2 \left(x - 1\right)} d x} - \int{\frac{1}{2 \left(x + 1\right)} d x}\right)}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(x \right)} = \frac{1}{x - 1}$$$:

$$x \ln{\left(1 - x^{2} \right)} - 2 x + 2 \int{\frac{1}{2 \left(x + 1\right)} d x} - 2 {\color{red}{\int{\frac{1}{2 \left(x - 1\right)} d x}}} = x \ln{\left(1 - x^{2} \right)} - 2 x + 2 \int{\frac{1}{2 \left(x + 1\right)} d x} - 2 {\color{red}{\left(\frac{\int{\frac{1}{x - 1} d x}}{2}\right)}}$$

Misalkan $$$u=x - 1$$$.

Kemudian $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = du$$$.

Integralnya menjadi

$$x \ln{\left(1 - x^{2} \right)} - 2 x + 2 \int{\frac{1}{2 \left(x + 1\right)} d x} - {\color{red}{\int{\frac{1}{x - 1} d x}}} = x \ln{\left(1 - x^{2} \right)} - 2 x + 2 \int{\frac{1}{2 \left(x + 1\right)} d x} - {\color{red}{\int{\frac{1}{u} d u}}}$$

Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$x \ln{\left(1 - x^{2} \right)} - 2 x + 2 \int{\frac{1}{2 \left(x + 1\right)} d x} - {\color{red}{\int{\frac{1}{u} d u}}} = x \ln{\left(1 - x^{2} \right)} - 2 x + 2 \int{\frac{1}{2 \left(x + 1\right)} d x} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Ingat bahwa $$$u=x - 1$$$:

$$x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} + 2 \int{\frac{1}{2 \left(x + 1\right)} d x} = x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)} + 2 \int{\frac{1}{2 \left(x + 1\right)} d x}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(x \right)} = \frac{1}{x + 1}$$$:

$$x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{x - 1}\right| \right)} + 2 {\color{red}{\int{\frac{1}{2 \left(x + 1\right)} d x}}} = x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{x - 1}\right| \right)} + 2 {\color{red}{\left(\frac{\int{\frac{1}{x + 1} d x}}{2}\right)}}$$

Misalkan $$$u=x + 1$$$.

Kemudian $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = du$$$.

Integralnya menjadi

$$x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{x - 1}\right| \right)} + {\color{red}{\int{\frac{1}{x + 1} d x}}} = x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{x - 1}\right| \right)} + {\color{red}{\int{\frac{1}{u} d u}}}$$

Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{x - 1}\right| \right)} + {\color{red}{\int{\frac{1}{u} d u}}} = x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{x - 1}\right| \right)} + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Ingat bahwa $$$u=x + 1$$$:

$$x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}$$

Oleh karena itu,

$$\int{\ln{\left(1 - x^{2} \right)} d x} = x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{x + 1}\right| \right)}$$

Tambahkan konstanta integrasi:

$$\int{\ln{\left(1 - x^{2} \right)} d x} = x \ln{\left(1 - x^{2} \right)} - 2 x - \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{x + 1}\right| \right)}+C$$

Jawaban

$$$\int \ln\left(1 - x^{2}\right)\, dx = \left(x \ln\left(1 - x^{2}\right) - 2 x - \ln\left(\left|{x - 1}\right|\right) + \ln\left(\left|{x + 1}\right|\right)\right) + C$$$A


Please try a new game Rotatly