Integral von $$$\frac{\sqrt{2} \sin{\left(2 x \right)}}{\cos^{3}{\left(x \right)}}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{\sqrt{2} \sin{\left(2 x \right)}}{\cos^{3}{\left(x \right)}}\, dx$$$.
Lösung
Schreiben Sie den Integranden um:
$${\color{red}{\int{\frac{\sqrt{2} \sin{\left(2 x \right)}}{\cos^{3}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{2 \sqrt{2} \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=2 \sqrt{2}$$$ und $$$f{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}$$$ an:
$${\color{red}{\int{\frac{2 \sqrt{2} \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}}} = {\color{red}{\left(2 \sqrt{2} \int{\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}\right)}}$$
Sei $$$u=\cos{\left(x \right)}$$$.
Dann $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (die Schritte sind » zu sehen), und es gilt $$$\sin{\left(x \right)} dx = - du$$$.
Daher,
$$2 \sqrt{2} {\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}}} = 2 \sqrt{2} {\color{red}{\int{\left(- \frac{1}{u^{2}}\right)d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=-1$$$ und $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$ an:
$$2 \sqrt{2} {\color{red}{\int{\left(- \frac{1}{u^{2}}\right)d u}}} = 2 \sqrt{2} {\color{red}{\left(- \int{\frac{1}{u^{2}} d u}\right)}}$$
Wenden Sie die Potenzregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=-2$$$ an:
$$- 2 \sqrt{2} {\color{red}{\int{\frac{1}{u^{2}} d u}}}=- 2 \sqrt{2} {\color{red}{\int{u^{-2} d u}}}=- 2 \sqrt{2} {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=- 2 \sqrt{2} {\color{red}{\left(- u^{-1}\right)}}=- 2 \sqrt{2} {\color{red}{\left(- \frac{1}{u}\right)}}$$
Zur Erinnerung: $$$u=\cos{\left(x \right)}$$$:
$$2 \sqrt{2} {\color{red}{u}}^{-1} = 2 \sqrt{2} {\color{red}{\cos{\left(x \right)}}}^{-1}$$
Daher,
$$\int{\frac{\sqrt{2} \sin{\left(2 x \right)}}{\cos^{3}{\left(x \right)}} d x} = \frac{2 \sqrt{2}}{\cos{\left(x \right)}}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{\sqrt{2} \sin{\left(2 x \right)}}{\cos^{3}{\left(x \right)}} d x} = \frac{2 \sqrt{2}}{\cos{\left(x \right)}}+C$$
Antwort
$$$\int \frac{\sqrt{2} \sin{\left(2 x \right)}}{\cos^{3}{\left(x \right)}}\, dx = \frac{2 \sqrt{2}}{\cos{\left(x \right)}} + C$$$A