Integral von $$$e^{- x} \sin{\left(x \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int e^{- x} \sin{\left(x \right)}\, dx$$$.
Lösung
Für das Integral $$$\int{e^{- x} \sin{\left(x \right)} d x}$$$ verwenden Sie die partielle Integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Seien $$$\operatorname{u}=\sin{\left(x \right)}$$$ und $$$\operatorname{dv}=e^{- x} dx$$$.
Dann gilt $$$\operatorname{du}=\left(\sin{\left(x \right)}\right)^{\prime }dx=\cos{\left(x \right)} dx$$$ (Rechenschritte siehe ») und $$$\operatorname{v}=\int{e^{- x} d x}=- e^{- x}$$$ (Rechenschritte siehe »).
Somit,
$${\color{red}{\int{e^{- x} \sin{\left(x \right)} d x}}}={\color{red}{\left(\sin{\left(x \right)} \cdot \left(- e^{- x}\right)-\int{\left(- e^{- x}\right) \cdot \cos{\left(x \right)} d x}\right)}}={\color{red}{\left(- \int{\left(- e^{- x} \cos{\left(x \right)}\right)d x} - e^{- x} \sin{\left(x \right)}\right)}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=-1$$$ und $$$f{\left(x \right)} = e^{- x} \cos{\left(x \right)}$$$ an:
$$- {\color{red}{\int{\left(- e^{- x} \cos{\left(x \right)}\right)d x}}} - e^{- x} \sin{\left(x \right)} = - {\color{red}{\left(- \int{e^{- x} \cos{\left(x \right)} d x}\right)}} - e^{- x} \sin{\left(x \right)}$$
Für das Integral $$$\int{e^{- x} \cos{\left(x \right)} d x}$$$ verwenden Sie die partielle Integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Seien $$$\operatorname{u}=\cos{\left(x \right)}$$$ und $$$\operatorname{dv}=e^{- x} dx$$$.
Dann gilt $$$\operatorname{du}=\left(\cos{\left(x \right)}\right)^{\prime }dx=- \sin{\left(x \right)} dx$$$ (Rechenschritte siehe ») und $$$\operatorname{v}=\int{e^{- x} d x}=- e^{- x}$$$ (Rechenschritte siehe »).
Das Integral lässt sich umschreiben als
$${\color{red}{\int{e^{- x} \cos{\left(x \right)} d x}}} - e^{- x} \sin{\left(x \right)}={\color{red}{\left(\cos{\left(x \right)} \cdot \left(- e^{- x}\right)-\int{\left(- e^{- x}\right) \cdot \left(- \sin{\left(x \right)}\right) d x}\right)}} - e^{- x} \sin{\left(x \right)}={\color{red}{\left(- \int{e^{- x} \sin{\left(x \right)} d x} - e^{- x} \cos{\left(x \right)}\right)}} - e^{- x} \sin{\left(x \right)}$$
Wir sind bei einem Integral angelangt, das wir bereits gesehen haben.
Somit haben wir die folgende einfache Gleichung für das Integral erhalten:
$$\int{e^{- x} \sin{\left(x \right)} d x} = - \int{e^{- x} \sin{\left(x \right)} d x} - e^{- x} \sin{\left(x \right)} - e^{- x} \cos{\left(x \right)}$$
Lösen wir es, erhalten wir, dass
$$\int{e^{- x} \sin{\left(x \right)} d x} = \frac{\left(- \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{- x}}{2}$$
Daher,
$$\int{e^{- x} \sin{\left(x \right)} d x} = \frac{\left(- \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{- x}}{2}$$
Vereinfachen:
$$\int{e^{- x} \sin{\left(x \right)} d x} = - \frac{\sqrt{2} e^{- x} \sin{\left(x + \frac{\pi}{4} \right)}}{2}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{e^{- x} \sin{\left(x \right)} d x} = - \frac{\sqrt{2} e^{- x} \sin{\left(x + \frac{\pi}{4} \right)}}{2}+C$$
Antwort
$$$\int e^{- x} \sin{\left(x \right)}\, dx = - \frac{\sqrt{2} e^{- x} \sin{\left(x + \frac{\pi}{4} \right)}}{2} + C$$$A