$$$e^{- x} \sin{\left(x \right)}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int e^{- x} \sin{\left(x \right)}\, dx$$$.
Çözüm
$$$\int{e^{- x} \sin{\left(x \right)} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.
$$$\operatorname{u}=\sin{\left(x \right)}$$$ ve $$$\operatorname{dv}=e^{- x} dx$$$ olsun.
O halde $$$\operatorname{du}=\left(\sin{\left(x \right)}\right)^{\prime }dx=\cos{\left(x \right)} dx$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{e^{- x} d x}=- e^{- x}$$$ (adımlar için bkz. »).
Dolayısıyla,
$${\color{red}{\int{e^{- x} \sin{\left(x \right)} d x}}}={\color{red}{\left(\sin{\left(x \right)} \cdot \left(- e^{- x}\right)-\int{\left(- e^{- x}\right) \cdot \cos{\left(x \right)} d x}\right)}}={\color{red}{\left(- \int{\left(- e^{- x} \cos{\left(x \right)}\right)d x} - e^{- x} \sin{\left(x \right)}\right)}}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=-1$$$ ve $$$f{\left(x \right)} = e^{- x} \cos{\left(x \right)}$$$ ile uygula:
$$- {\color{red}{\int{\left(- e^{- x} \cos{\left(x \right)}\right)d x}}} - e^{- x} \sin{\left(x \right)} = - {\color{red}{\left(- \int{e^{- x} \cos{\left(x \right)} d x}\right)}} - e^{- x} \sin{\left(x \right)}$$
$$$\int{e^{- x} \cos{\left(x \right)} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.
$$$\operatorname{u}=\cos{\left(x \right)}$$$ ve $$$\operatorname{dv}=e^{- x} dx$$$ olsun.
O halde $$$\operatorname{du}=\left(\cos{\left(x \right)}\right)^{\prime }dx=- \sin{\left(x \right)} dx$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{e^{- x} d x}=- e^{- x}$$$ (adımlar için bkz. »).
İntegral şu şekilde yeniden yazılabilir:
$${\color{red}{\int{e^{- x} \cos{\left(x \right)} d x}}} - e^{- x} \sin{\left(x \right)}={\color{red}{\left(\cos{\left(x \right)} \cdot \left(- e^{- x}\right)-\int{\left(- e^{- x}\right) \cdot \left(- \sin{\left(x \right)}\right) d x}\right)}} - e^{- x} \sin{\left(x \right)}={\color{red}{\left(- \int{e^{- x} \sin{\left(x \right)} d x} - e^{- x} \cos{\left(x \right)}\right)}} - e^{- x} \sin{\left(x \right)}$$
Daha önce gördüğümüz bir integrale ulaştık.
Böylece, integrale ilişkin aşağıdaki basit denklemi elde ettik:
$$\int{e^{- x} \sin{\left(x \right)} d x} = - \int{e^{- x} \sin{\left(x \right)} d x} - e^{- x} \sin{\left(x \right)} - e^{- x} \cos{\left(x \right)}$$
Çözdüğümüzde, şunu elde ederiz
$$\int{e^{- x} \sin{\left(x \right)} d x} = \frac{\left(- \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{- x}}{2}$$
Dolayısıyla,
$$\int{e^{- x} \sin{\left(x \right)} d x} = \frac{\left(- \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{- x}}{2}$$
Sadeleştirin:
$$\int{e^{- x} \sin{\left(x \right)} d x} = - \frac{\sqrt{2} e^{- x} \sin{\left(x + \frac{\pi}{4} \right)}}{2}$$
İntegrasyon sabitini ekleyin:
$$\int{e^{- x} \sin{\left(x \right)} d x} = - \frac{\sqrt{2} e^{- x} \sin{\left(x + \frac{\pi}{4} \right)}}{2}+C$$
Cevap
$$$\int e^{- x} \sin{\left(x \right)}\, dx = - \frac{\sqrt{2} e^{- x} \sin{\left(x + \frac{\pi}{4} \right)}}{2} + C$$$A