Integral von $$$\tan{\left(x \right)} \sec{\left(x \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \tan{\left(x \right)} \sec{\left(x \right)}\, dx$$$.
Lösung
Das Integral von $$$\tan{\left(x \right)} \sec{\left(x \right)}$$$ ist $$$\int{\tan{\left(x \right)} \sec{\left(x \right)} d x} = \sec{\left(x \right)}$$$:
$${\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}} = {\color{red}{\sec{\left(x \right)}}}$$
Daher,
$$\int{\tan{\left(x \right)} \sec{\left(x \right)} d x} = \sec{\left(x \right)}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\tan{\left(x \right)} \sec{\left(x \right)} d x} = \sec{\left(x \right)}+C$$
Antwort
$$$\int \tan{\left(x \right)} \sec{\left(x \right)}\, dx = \sec{\left(x \right)} + C$$$A