Integral von $$$e^{4 x^{2}}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int e^{4 x^{2}}\, dx$$$.
Lösung
Sei $$$u=2 x$$$.
Dann $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = \frac{du}{2}$$$.
Das Integral lässt sich umschreiben als
$${\color{red}{\int{e^{4 x^{2}} d x}}} = {\color{red}{\int{\frac{e^{u^{2}}}{2} d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(u \right)} = e^{u^{2}}$$$ an:
$${\color{red}{\int{\frac{e^{u^{2}}}{2} d u}}} = {\color{red}{\left(\frac{\int{e^{u^{2}} d u}}{2}\right)}}$$
Dieses Integral (Imaginäre Fehlerfunktion) besitzt keine geschlossene Form:
$$\frac{{\color{red}{\int{e^{u^{2}} d u}}}}{2} = \frac{{\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(u \right)}}{2}\right)}}}{2}$$
Zur Erinnerung: $$$u=2 x$$$:
$$\frac{\sqrt{\pi} \operatorname{erfi}{\left({\color{red}{u}} \right)}}{4} = \frac{\sqrt{\pi} \operatorname{erfi}{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$
Daher,
$$\int{e^{4 x^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erfi}{\left(2 x \right)}}{4}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{e^{4 x^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erfi}{\left(2 x \right)}}{4}+C$$
Antwort
$$$\int e^{4 x^{2}}\, dx = \frac{\sqrt{\pi} \operatorname{erfi}{\left(2 x \right)}}{4} + C$$$A