Integral von $$$\cot^{2}{\left(\frac{x}{2} \right)} \csc^{2}{\left(\frac{x}{2} \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \cot^{2}{\left(\frac{x}{2} \right)} \csc^{2}{\left(\frac{x}{2} \right)}\, dx$$$.
Lösung
Sei $$$u=\cot{\left(\frac{x}{2} \right)}$$$.
Dann $$$du=\left(\cot{\left(\frac{x}{2} \right)}\right)^{\prime }dx = - \frac{\csc^{2}{\left(\frac{x}{2} \right)}}{2} dx$$$ (die Schritte sind » zu sehen), und es gilt $$$\csc^{2}{\left(\frac{x}{2} \right)} dx = - 2 du$$$.
Daher,
$${\color{red}{\int{\cot^{2}{\left(\frac{x}{2} \right)} \csc^{2}{\left(\frac{x}{2} \right)} d x}}} = {\color{red}{\int{\left(- 2 u^{2}\right)d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=-2$$$ und $$$f{\left(u \right)} = u^{2}$$$ an:
$${\color{red}{\int{\left(- 2 u^{2}\right)d u}}} = {\color{red}{\left(- 2 \int{u^{2} d u}\right)}}$$
Wenden Sie die Potenzregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=2$$$ an:
$$- 2 {\color{red}{\int{u^{2} d u}}}=- 2 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- 2 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Zur Erinnerung: $$$u=\cot{\left(\frac{x}{2} \right)}$$$:
$$- \frac{2 {\color{red}{u}}^{3}}{3} = - \frac{2 {\color{red}{\cot{\left(\frac{x}{2} \right)}}}^{3}}{3}$$
Daher,
$$\int{\cot^{2}{\left(\frac{x}{2} \right)} \csc^{2}{\left(\frac{x}{2} \right)} d x} = - \frac{2 \cot^{3}{\left(\frac{x}{2} \right)}}{3}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\cot^{2}{\left(\frac{x}{2} \right)} \csc^{2}{\left(\frac{x}{2} \right)} d x} = - \frac{2 \cot^{3}{\left(\frac{x}{2} \right)}}{3}+C$$
Antwort
$$$\int \cot^{2}{\left(\frac{x}{2} \right)} \csc^{2}{\left(\frac{x}{2} \right)}\, dx = - \frac{2 \cot^{3}{\left(\frac{x}{2} \right)}}{3} + C$$$A