$$$\cot^{2}{\left(\frac{x}{2} \right)} \csc^{2}{\left(\frac{x}{2} \right)}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \cot^{2}{\left(\frac{x}{2} \right)} \csc^{2}{\left(\frac{x}{2} \right)}\, dx$$$을(를) 구하시오.
풀이
$$$u=\cot{\left(\frac{x}{2} \right)}$$$라 하자.
그러면 $$$du=\left(\cot{\left(\frac{x}{2} \right)}\right)^{\prime }dx = - \frac{\csc^{2}{\left(\frac{x}{2} \right)}}{2} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\csc^{2}{\left(\frac{x}{2} \right)} dx = - 2 du$$$임을 얻습니다.
적분은 다음과 같이 다시 쓸 수 있습니다.
$${\color{red}{\int{\cot^{2}{\left(\frac{x}{2} \right)} \csc^{2}{\left(\frac{x}{2} \right)} d x}}} = {\color{red}{\int{\left(- 2 u^{2}\right)d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=-2$$$와 $$$f{\left(u \right)} = u^{2}$$$에 적용하세요:
$${\color{red}{\int{\left(- 2 u^{2}\right)d u}}} = {\color{red}{\left(- 2 \int{u^{2} d u}\right)}}$$
멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:
$$- 2 {\color{red}{\int{u^{2} d u}}}=- 2 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- 2 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
다음 $$$u=\cot{\left(\frac{x}{2} \right)}$$$을 기억하라:
$$- \frac{2 {\color{red}{u}}^{3}}{3} = - \frac{2 {\color{red}{\cot{\left(\frac{x}{2} \right)}}}^{3}}{3}$$
따라서,
$$\int{\cot^{2}{\left(\frac{x}{2} \right)} \csc^{2}{\left(\frac{x}{2} \right)} d x} = - \frac{2 \cot^{3}{\left(\frac{x}{2} \right)}}{3}$$
적분 상수를 추가하세요:
$$\int{\cot^{2}{\left(\frac{x}{2} \right)} \csc^{2}{\left(\frac{x}{2} \right)} d x} = - \frac{2 \cot^{3}{\left(\frac{x}{2} \right)}}{3}+C$$
정답
$$$\int \cot^{2}{\left(\frac{x}{2} \right)} \csc^{2}{\left(\frac{x}{2} \right)}\, dx = - \frac{2 \cot^{3}{\left(\frac{x}{2} \right)}}{3} + C$$$A