$$$\cot^{2}{\left(\frac{x}{2} \right)} \csc^{2}{\left(\frac{x}{2} \right)}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\cot^{2}{\left(\frac{x}{2} \right)} \csc^{2}{\left(\frac{x}{2} \right)}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \cot^{2}{\left(\frac{x}{2} \right)} \csc^{2}{\left(\frac{x}{2} \right)}\, dx$$$을(를) 구하시오.

풀이

$$$u=\cot{\left(\frac{x}{2} \right)}$$$라 하자.

그러면 $$$du=\left(\cot{\left(\frac{x}{2} \right)}\right)^{\prime }dx = - \frac{\csc^{2}{\left(\frac{x}{2} \right)}}{2} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\csc^{2}{\left(\frac{x}{2} \right)} dx = - 2 du$$$임을 얻습니다.

적분은 다음과 같이 다시 쓸 수 있습니다.

$${\color{red}{\int{\cot^{2}{\left(\frac{x}{2} \right)} \csc^{2}{\left(\frac{x}{2} \right)} d x}}} = {\color{red}{\int{\left(- 2 u^{2}\right)d u}}}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=-2$$$$$$f{\left(u \right)} = u^{2}$$$에 적용하세요:

$${\color{red}{\int{\left(- 2 u^{2}\right)d u}}} = {\color{red}{\left(- 2 \int{u^{2} d u}\right)}}$$

멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:

$$- 2 {\color{red}{\int{u^{2} d u}}}=- 2 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- 2 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$

다음 $$$u=\cot{\left(\frac{x}{2} \right)}$$$을 기억하라:

$$- \frac{2 {\color{red}{u}}^{3}}{3} = - \frac{2 {\color{red}{\cot{\left(\frac{x}{2} \right)}}}^{3}}{3}$$

따라서,

$$\int{\cot^{2}{\left(\frac{x}{2} \right)} \csc^{2}{\left(\frac{x}{2} \right)} d x} = - \frac{2 \cot^{3}{\left(\frac{x}{2} \right)}}{3}$$

적분 상수를 추가하세요:

$$\int{\cot^{2}{\left(\frac{x}{2} \right)} \csc^{2}{\left(\frac{x}{2} \right)} d x} = - \frac{2 \cot^{3}{\left(\frac{x}{2} \right)}}{3}+C$$

정답

$$$\int \cot^{2}{\left(\frac{x}{2} \right)} \csc^{2}{\left(\frac{x}{2} \right)}\, dx = - \frac{2 \cot^{3}{\left(\frac{x}{2} \right)}}{3} + C$$$A


Please try a new game Rotatly