Integral von $$$\frac{1}{\left(x - 1\right)^{3}}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{1}{\left(x - 1\right)^{3}}\, dx$$$.
Lösung
Sei $$$u=x - 1$$$.
Dann $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = du$$$.
Somit,
$${\color{red}{\int{\frac{1}{\left(x - 1\right)^{3}} d x}}} = {\color{red}{\int{\frac{1}{u^{3}} d u}}}$$
Wenden Sie die Potenzregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=-3$$$ an:
$${\color{red}{\int{\frac{1}{u^{3}} d u}}}={\color{red}{\int{u^{-3} d u}}}={\color{red}{\frac{u^{-3 + 1}}{-3 + 1}}}={\color{red}{\left(- \frac{u^{-2}}{2}\right)}}={\color{red}{\left(- \frac{1}{2 u^{2}}\right)}}$$
Zur Erinnerung: $$$u=x - 1$$$:
$$- \frac{{\color{red}{u}}^{-2}}{2} = - \frac{{\color{red}{\left(x - 1\right)}}^{-2}}{2}$$
Daher,
$$\int{\frac{1}{\left(x - 1\right)^{3}} d x} = - \frac{1}{2 \left(x - 1\right)^{2}}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{1}{\left(x - 1\right)^{3}} d x} = - \frac{1}{2 \left(x - 1\right)^{2}}+C$$
Antwort
$$$\int \frac{1}{\left(x - 1\right)^{3}}\, dx = - \frac{1}{2 \left(x - 1\right)^{2}} + C$$$A