Intégrale de $$$\frac{1}{\left(x - 1\right)^{3}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{1}{\left(x - 1\right)^{3}}\, dx$$$.
Solution
Soit $$$u=x - 1$$$.
Alors $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = du$$$.
L’intégrale peut être réécrite sous la forme
$${\color{red}{\int{\frac{1}{\left(x - 1\right)^{3}} d x}}} = {\color{red}{\int{\frac{1}{u^{3}} d u}}}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=-3$$$ :
$${\color{red}{\int{\frac{1}{u^{3}} d u}}}={\color{red}{\int{u^{-3} d u}}}={\color{red}{\frac{u^{-3 + 1}}{-3 + 1}}}={\color{red}{\left(- \frac{u^{-2}}{2}\right)}}={\color{red}{\left(- \frac{1}{2 u^{2}}\right)}}$$
Rappelons que $$$u=x - 1$$$ :
$$- \frac{{\color{red}{u}}^{-2}}{2} = - \frac{{\color{red}{\left(x - 1\right)}}^{-2}}{2}$$
Par conséquent,
$$\int{\frac{1}{\left(x - 1\right)^{3}} d x} = - \frac{1}{2 \left(x - 1\right)^{2}}$$
Ajouter la constante d'intégration :
$$\int{\frac{1}{\left(x - 1\right)^{3}} d x} = - \frac{1}{2 \left(x - 1\right)^{2}}+C$$
Réponse
$$$\int \frac{1}{\left(x - 1\right)^{3}}\, dx = - \frac{1}{2 \left(x - 1\right)^{2}} + C$$$A