Integral von $$$\frac{1}{\sin^{6}{\left(x \right)} \cos^{6}{\left(x \right)}}$$$

Der Rechner bestimmt das Integral/die Stammfunktion von $$$\frac{1}{\sin^{6}{\left(x \right)} \cos^{6}{\left(x \right)}}$$$ und zeigt die Rechenschritte an.

Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale

Bitte schreiben Sie ohne Differentiale wie $$$dx$$$, $$$dy$$$ usw.
Für automatische Erkennung leer lassen.

Wenn der Rechner etwas nicht berechnet hat oder Sie einen Fehler festgestellt haben oder einen Vorschlag oder Feedback haben, bitte kontaktieren Sie uns.

Ihre Eingabe

Bestimme $$$\int \frac{1}{\sin^{6}{\left(x \right)} \cos^{6}{\left(x \right)}}\, dx$$$.

Lösung

Multiplizieren Sie Zähler und Nenner mit $$$\frac{1}{\cos^{6}{\left(x \right)}}$$$ und wandeln Sie $$$\frac{\cos^{6}{\left(x \right)}}{\sin^{6}{\left(x \right)}}$$$ in $$$\frac{1}{\tan^{6}{\left(x \right)}}$$$ um:

$${\color{red}{\int{\frac{1}{\sin^{6}{\left(x \right)} \cos^{6}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{\cos^{12}{\left(x \right)} \tan^{6}{\left(x \right)}} d x}}}$$

Ziehen Sie zwei Kosinusfaktoren heraus und schreiben Sie diese mithilfe der Formel $$$\frac{1}{\cos^{2}{\left(x \right)}}=\sec^{2}{\left(x \right)}$$$ in Abhängigkeit von der Sekans um.:

$${\color{red}{\int{\frac{1}{\cos^{12}{\left(x \right)} \tan^{6}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\cos^{10}{\left(x \right)} \tan^{6}{\left(x \right)}} d x}}}$$

Schreiben Sie den Kosinus in Abhängigkeit vom Tangens mithilfe der Formel $$$\cos^{2}{\left(x \right)}=\frac{1}{\tan^{2}{\left(x \right)} + 1}$$$ um.:

$${\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\cos^{10}{\left(x \right)} \tan^{6}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\left(\tan^{2}{\left(x \right)} + 1\right)^{5} \sec^{2}{\left(x \right)}}{\tan^{6}{\left(x \right)}} d x}}}$$

Sei $$$u=\tan{\left(x \right)}$$$.

Dann $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (die Schritte sind » zu sehen), und es gilt $$$\sec^{2}{\left(x \right)} dx = du$$$.

Das Integral lässt sich umschreiben als

$${\color{red}{\int{\frac{\left(\tan^{2}{\left(x \right)} + 1\right)^{5} \sec^{2}{\left(x \right)}}{\tan^{6}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\left(u^{2} + 1\right)^{5}}{u^{6}} d u}}}$$

Expand the expression:

$${\color{red}{\int{\frac{\left(u^{2} + 1\right)^{5}}{u^{6}} d u}}} = {\color{red}{\int{\left(u^{4} + 5 u^{2} + 10 + \frac{10}{u^{2}} + \frac{5}{u^{4}} + \frac{1}{u^{6}}\right)d u}}}$$

Gliedweise integrieren:

$${\color{red}{\int{\left(u^{4} + 5 u^{2} + 10 + \frac{10}{u^{2}} + \frac{5}{u^{4}} + \frac{1}{u^{6}}\right)d u}}} = {\color{red}{\left(\int{10 d u} + \int{\frac{1}{u^{6}} d u} + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u}\right)}}$$

Wenden Sie die Konstantenregel $$$\int c\, du = c u$$$ mit $$$c=10$$$ an:

$$\int{\frac{1}{u^{6}} d u} + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\int{10 d u}}} = \int{\frac{1}{u^{6}} d u} + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\left(10 u\right)}}$$

Wenden Sie die Potenzregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=-6$$$ an:

$$10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\int{\frac{1}{u^{6}} d u}}}=10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\int{u^{-6} d u}}}=10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\frac{u^{-6 + 1}}{-6 + 1}}}=10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\left(- \frac{u^{-5}}{5}\right)}}=10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\left(- \frac{1}{5 u^{5}}\right)}}$$

Wenden Sie die Potenzregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=4$$$ an:

$$10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + {\color{red}{\int{u^{4} d u}}} - \frac{1}{5 u^{5}}=10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + {\color{red}{\frac{u^{1 + 4}}{1 + 4}}} - \frac{1}{5 u^{5}}=10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + {\color{red}{\left(\frac{u^{5}}{5}\right)}} - \frac{1}{5 u^{5}}$$

Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=5$$$ und $$$f{\left(u \right)} = \frac{1}{u^{4}}$$$ an:

$$\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + {\color{red}{\int{\frac{5}{u^{4}} d u}}} - \frac{1}{5 u^{5}} = \frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + {\color{red}{\left(5 \int{\frac{1}{u^{4}} d u}\right)}} - \frac{1}{5 u^{5}}$$

Wenden Sie die Potenzregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=-4$$$ an:

$$\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + 5 {\color{red}{\int{\frac{1}{u^{4}} d u}}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + 5 {\color{red}{\int{u^{-4} d u}}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + 5 {\color{red}{\frac{u^{-4 + 1}}{-4 + 1}}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + 5 {\color{red}{\left(- \frac{u^{-3}}{3}\right)}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + 5 {\color{red}{\left(- \frac{1}{3 u^{3}}\right)}} - \frac{1}{5 u^{5}}$$

Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=5$$$ und $$$f{\left(u \right)} = u^{2}$$$ an:

$$\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + {\color{red}{\int{5 u^{2} d u}}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}} = \frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + {\color{red}{\left(5 \int{u^{2} d u}\right)}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}$$

Wenden Sie die Potenzregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=2$$$ an:

$$\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + 5 {\color{red}{\int{u^{2} d u}}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + 5 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + 5 {\color{red}{\left(\frac{u^{3}}{3}\right)}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}$$

Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=10$$$ und $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$ an:

$$\frac{u^{5}}{5} + \frac{5 u^{3}}{3} + 10 u + {\color{red}{\int{\frac{10}{u^{2}} d u}}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}} = \frac{u^{5}}{5} + \frac{5 u^{3}}{3} + 10 u + {\color{red}{\left(10 \int{\frac{1}{u^{2}} d u}\right)}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}$$

Wenden Sie die Potenzregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=-2$$$ an:

$$\frac{u^{5}}{5} + \frac{5 u^{3}}{3} + 10 u + 10 {\color{red}{\int{\frac{1}{u^{2}} d u}}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + \frac{5 u^{3}}{3} + 10 u + 10 {\color{red}{\int{u^{-2} d u}}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + \frac{5 u^{3}}{3} + 10 u + 10 {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + \frac{5 u^{3}}{3} + 10 u + 10 {\color{red}{\left(- u^{-1}\right)}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + \frac{5 u^{3}}{3} + 10 u + 10 {\color{red}{\left(- \frac{1}{u}\right)}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}$$

Zur Erinnerung: $$$u=\tan{\left(x \right)}$$$:

$$- \frac{{\color{red}{u}}^{-5}}{5} - \frac{5 {\color{red}{u}}^{-3}}{3} - 10 {\color{red}{u}}^{-1} + 10 {\color{red}{u}} + \frac{5 {\color{red}{u}}^{3}}{3} + \frac{{\color{red}{u}}^{5}}{5} = - \frac{{\color{red}{\tan{\left(x \right)}}}^{-5}}{5} - \frac{5 {\color{red}{\tan{\left(x \right)}}}^{-3}}{3} - 10 {\color{red}{\tan{\left(x \right)}}}^{-1} + 10 {\color{red}{\tan{\left(x \right)}}} + \frac{5 {\color{red}{\tan{\left(x \right)}}}^{3}}{3} + \frac{{\color{red}{\tan{\left(x \right)}}}^{5}}{5}$$

Daher,

$$\int{\frac{1}{\sin^{6}{\left(x \right)} \cos^{6}{\left(x \right)}} d x} = \frac{\tan^{5}{\left(x \right)}}{5} + \frac{5 \tan^{3}{\left(x \right)}}{3} + 10 \tan{\left(x \right)} - \frac{10}{\tan{\left(x \right)}} - \frac{5}{3 \tan^{3}{\left(x \right)}} - \frac{1}{5 \tan^{5}{\left(x \right)}}$$

Vereinfachen:

$$\int{\frac{1}{\sin^{6}{\left(x \right)} \cos^{6}{\left(x \right)}} d x} = \frac{\left(3 \tan^{4}{\left(x \right)} + 25 \tan^{2}{\left(x \right)} + 150\right) \tan^{6}{\left(x \right)} - 150 \tan^{4}{\left(x \right)} - 25 \tan^{2}{\left(x \right)} - 3}{15 \tan^{5}{\left(x \right)}}$$

Fügen Sie die Integrationskonstante hinzu:

$$\int{\frac{1}{\sin^{6}{\left(x \right)} \cos^{6}{\left(x \right)}} d x} = \frac{\left(3 \tan^{4}{\left(x \right)} + 25 \tan^{2}{\left(x \right)} + 150\right) \tan^{6}{\left(x \right)} - 150 \tan^{4}{\left(x \right)} - 25 \tan^{2}{\left(x \right)} - 3}{15 \tan^{5}{\left(x \right)}}+C$$

Antwort

$$$\int \frac{1}{\sin^{6}{\left(x \right)} \cos^{6}{\left(x \right)}}\, dx = \frac{\left(3 \tan^{4}{\left(x \right)} + 25 \tan^{2}{\left(x \right)} + 150\right) \tan^{6}{\left(x \right)} - 150 \tan^{4}{\left(x \right)} - 25 \tan^{2}{\left(x \right)} - 3}{15 \tan^{5}{\left(x \right)}} + C$$$A


Please try a new game Rotatly