$$$\frac{1}{\sin^{6}{\left(x \right)} \cos^{6}{\left(x \right)}}$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int \frac{1}{\sin^{6}{\left(x \right)} \cos^{6}{\left(x \right)}}\, dx$$$。
解答
將分子與分母同時乘以 $$$\frac{1}{\cos^{6}{\left(x \right)}}$$$,並將 $$$\frac{\cos^{6}{\left(x \right)}}{\sin^{6}{\left(x \right)}}$$$ 轉換為 $$$\frac{1}{\tan^{6}{\left(x \right)}}$$$:
$${\color{red}{\int{\frac{1}{\sin^{6}{\left(x \right)} \cos^{6}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{\cos^{12}{\left(x \right)} \tan^{6}{\left(x \right)}} d x}}}$$
將兩個餘弦因式提出,並使用公式 $$$\frac{1}{\cos^{2}{\left(x \right)}}=\sec^{2}{\left(x \right)}$$$ 將它們改寫為以正割表示。:
$${\color{red}{\int{\frac{1}{\cos^{12}{\left(x \right)} \tan^{6}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\cos^{10}{\left(x \right)} \tan^{6}{\left(x \right)}} d x}}}$$
使用公式 $$$\cos^{2}{\left(x \right)}=\frac{1}{\tan^{2}{\left(x \right)} + 1}$$$,以正切表示餘弦:
$${\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\cos^{10}{\left(x \right)} \tan^{6}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\left(\tan^{2}{\left(x \right)} + 1\right)^{5} \sec^{2}{\left(x \right)}}{\tan^{6}{\left(x \right)}} d x}}}$$
令 $$$u=\tan{\left(x \right)}$$$。
則 $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (步驟見»),並可得 $$$\sec^{2}{\left(x \right)} dx = du$$$。
該積分可改寫為
$${\color{red}{\int{\frac{\left(\tan^{2}{\left(x \right)} + 1\right)^{5} \sec^{2}{\left(x \right)}}{\tan^{6}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\left(u^{2} + 1\right)^{5}}{u^{6}} d u}}}$$
Expand the expression:
$${\color{red}{\int{\frac{\left(u^{2} + 1\right)^{5}}{u^{6}} d u}}} = {\color{red}{\int{\left(u^{4} + 5 u^{2} + 10 + \frac{10}{u^{2}} + \frac{5}{u^{4}} + \frac{1}{u^{6}}\right)d u}}}$$
逐項積分:
$${\color{red}{\int{\left(u^{4} + 5 u^{2} + 10 + \frac{10}{u^{2}} + \frac{5}{u^{4}} + \frac{1}{u^{6}}\right)d u}}} = {\color{red}{\left(\int{10 d u} + \int{\frac{1}{u^{6}} d u} + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u}\right)}}$$
配合 $$$c=10$$$,應用常數法則 $$$\int c\, du = c u$$$:
$$\int{\frac{1}{u^{6}} d u} + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\int{10 d u}}} = \int{\frac{1}{u^{6}} d u} + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\left(10 u\right)}}$$
套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-6$$$:
$$10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\int{\frac{1}{u^{6}} d u}}}=10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\int{u^{-6} d u}}}=10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\frac{u^{-6 + 1}}{-6 + 1}}}=10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\left(- \frac{u^{-5}}{5}\right)}}=10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\left(- \frac{1}{5 u^{5}}\right)}}$$
套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=4$$$:
$$10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + {\color{red}{\int{u^{4} d u}}} - \frac{1}{5 u^{5}}=10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + {\color{red}{\frac{u^{1 + 4}}{1 + 4}}} - \frac{1}{5 u^{5}}=10 u + \int{\frac{5}{u^{4}} d u} + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + {\color{red}{\left(\frac{u^{5}}{5}\right)}} - \frac{1}{5 u^{5}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=5$$$ 與 $$$f{\left(u \right)} = \frac{1}{u^{4}}$$$:
$$\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + {\color{red}{\int{\frac{5}{u^{4}} d u}}} - \frac{1}{5 u^{5}} = \frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + {\color{red}{\left(5 \int{\frac{1}{u^{4}} d u}\right)}} - \frac{1}{5 u^{5}}$$
套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-4$$$:
$$\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + 5 {\color{red}{\int{\frac{1}{u^{4}} d u}}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + 5 {\color{red}{\int{u^{-4} d u}}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + 5 {\color{red}{\frac{u^{-4 + 1}}{-4 + 1}}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + 5 {\color{red}{\left(- \frac{u^{-3}}{3}\right)}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + \int{5 u^{2} d u} + 5 {\color{red}{\left(- \frac{1}{3 u^{3}}\right)}} - \frac{1}{5 u^{5}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=5$$$ 與 $$$f{\left(u \right)} = u^{2}$$$:
$$\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + {\color{red}{\int{5 u^{2} d u}}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}} = \frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + {\color{red}{\left(5 \int{u^{2} d u}\right)}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}$$
套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$:
$$\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + 5 {\color{red}{\int{u^{2} d u}}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + 5 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + 10 u + \int{\frac{10}{u^{2}} d u} + 5 {\color{red}{\left(\frac{u^{3}}{3}\right)}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=10$$$ 與 $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$:
$$\frac{u^{5}}{5} + \frac{5 u^{3}}{3} + 10 u + {\color{red}{\int{\frac{10}{u^{2}} d u}}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}} = \frac{u^{5}}{5} + \frac{5 u^{3}}{3} + 10 u + {\color{red}{\left(10 \int{\frac{1}{u^{2}} d u}\right)}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}$$
套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-2$$$:
$$\frac{u^{5}}{5} + \frac{5 u^{3}}{3} + 10 u + 10 {\color{red}{\int{\frac{1}{u^{2}} d u}}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + \frac{5 u^{3}}{3} + 10 u + 10 {\color{red}{\int{u^{-2} d u}}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + \frac{5 u^{3}}{3} + 10 u + 10 {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + \frac{5 u^{3}}{3} + 10 u + 10 {\color{red}{\left(- u^{-1}\right)}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}=\frac{u^{5}}{5} + \frac{5 u^{3}}{3} + 10 u + 10 {\color{red}{\left(- \frac{1}{u}\right)}} - \frac{5}{3 u^{3}} - \frac{1}{5 u^{5}}$$
回顧一下 $$$u=\tan{\left(x \right)}$$$:
$$- \frac{{\color{red}{u}}^{-5}}{5} - \frac{5 {\color{red}{u}}^{-3}}{3} - 10 {\color{red}{u}}^{-1} + 10 {\color{red}{u}} + \frac{5 {\color{red}{u}}^{3}}{3} + \frac{{\color{red}{u}}^{5}}{5} = - \frac{{\color{red}{\tan{\left(x \right)}}}^{-5}}{5} - \frac{5 {\color{red}{\tan{\left(x \right)}}}^{-3}}{3} - 10 {\color{red}{\tan{\left(x \right)}}}^{-1} + 10 {\color{red}{\tan{\left(x \right)}}} + \frac{5 {\color{red}{\tan{\left(x \right)}}}^{3}}{3} + \frac{{\color{red}{\tan{\left(x \right)}}}^{5}}{5}$$
因此,
$$\int{\frac{1}{\sin^{6}{\left(x \right)} \cos^{6}{\left(x \right)}} d x} = \frac{\tan^{5}{\left(x \right)}}{5} + \frac{5 \tan^{3}{\left(x \right)}}{3} + 10 \tan{\left(x \right)} - \frac{10}{\tan{\left(x \right)}} - \frac{5}{3 \tan^{3}{\left(x \right)}} - \frac{1}{5 \tan^{5}{\left(x \right)}}$$
化簡:
$$\int{\frac{1}{\sin^{6}{\left(x \right)} \cos^{6}{\left(x \right)}} d x} = \frac{\left(3 \tan^{4}{\left(x \right)} + 25 \tan^{2}{\left(x \right)} + 150\right) \tan^{6}{\left(x \right)} - 150 \tan^{4}{\left(x \right)} - 25 \tan^{2}{\left(x \right)} - 3}{15 \tan^{5}{\left(x \right)}}$$
加上積分常數:
$$\int{\frac{1}{\sin^{6}{\left(x \right)} \cos^{6}{\left(x \right)}} d x} = \frac{\left(3 \tan^{4}{\left(x \right)} + 25 \tan^{2}{\left(x \right)} + 150\right) \tan^{6}{\left(x \right)} - 150 \tan^{4}{\left(x \right)} - 25 \tan^{2}{\left(x \right)} - 3}{15 \tan^{5}{\left(x \right)}}+C$$
答案
$$$\int \frac{1}{\sin^{6}{\left(x \right)} \cos^{6}{\left(x \right)}}\, dx = \frac{\left(3 \tan^{4}{\left(x \right)} + 25 \tan^{2}{\left(x \right)} + 150\right) \tan^{6}{\left(x \right)} - 150 \tan^{4}{\left(x \right)} - 25 \tan^{2}{\left(x \right)} - 3}{15 \tan^{5}{\left(x \right)}} + C$$$A