Integral von $$$8 x^{9} y^{3}$$$ nach $$$x$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int 8 x^{9} y^{3}\, dx$$$.
Lösung
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=8 y^{3}$$$ und $$$f{\left(x \right)} = x^{9}$$$ an:
$${\color{red}{\int{8 x^{9} y^{3} d x}}} = {\color{red}{\left(8 y^{3} \int{x^{9} d x}\right)}}$$
Wenden Sie die Potenzregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=9$$$ an:
$$8 y^{3} {\color{red}{\int{x^{9} d x}}}=8 y^{3} {\color{red}{\frac{x^{1 + 9}}{1 + 9}}}=8 y^{3} {\color{red}{\left(\frac{x^{10}}{10}\right)}}$$
Daher,
$$\int{8 x^{9} y^{3} d x} = \frac{4 x^{10} y^{3}}{5}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{8 x^{9} y^{3} d x} = \frac{4 x^{10} y^{3}}{5}+C$$
Antwort
$$$\int 8 x^{9} y^{3}\, dx = \frac{4 x^{10} y^{3}}{5} + C$$$A