Bestimme den Kegelschnitt $$$\pi x^{2} \cos{\left(3 \right)} = 21$$$
Ähnliche Rechner: Parabelrechner, Kreisrechner, Ellipsenrechner, Hyperbel-Rechner
Ihre Eingabe
Bestimmen Sie den Typ und die Eigenschaften des Kegelschnitts $$$\pi x^{2} \cos{\left(3 \right)} = 21$$$.
Lösung
Die allgemeine Gleichung eines Kegelschnitts lautet $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.
In unserem Fall gilt $$$A = - \pi \cos{\left(3 \right)}$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = 0$$$, $$$E = 0$$$, $$$F = 21$$$.
Die Diskriminante des Kegelschnitts ist $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 0$$$.
Als Nächstes, $$$B^{2} - 4 A C = 0$$$.
Da $$$\Delta = 0$$$ gilt, ist dies der entartete Kegelschnitt.
Da $$$B^{2} - 4 A C = 0$$$ gilt, stellt die Gleichung zwei imaginäre Geraden dar.
Antwort
$$$\pi x^{2} \cos{\left(3 \right)} = 21$$$A stellt zwei imaginäre Geraden dar.
Allgemeine Form: $$$- \pi x^{2} \cos{\left(3 \right)} + 21 = 0$$$A.