Bestimme den Kegelschnitt $$$\frac{617}{1000000000000} = \frac{500 x^{2}}{673} - x$$$
Ähnliche Rechner: Parabelrechner, Kreisrechner, Ellipsenrechner, Hyperbel-Rechner
Ihre Eingabe
Bestimmen Sie den Typ und die Eigenschaften des Kegelschnitts $$$\frac{617}{1000000000000} = \frac{500 x^{2}}{673} - x$$$.
Lösung
Die allgemeine Gleichung eines Kegelschnitts lautet $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.
In unserem Fall gilt $$$A = \frac{500}{673}$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = -1$$$, $$$E = 0$$$, $$$F = - \frac{617}{1000000000000}$$$.
Die Diskriminante des Kegelschnitts ist $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 0$$$.
Als Nächstes, $$$B^{2} - 4 A C = 0$$$.
Da $$$\Delta = 0$$$ gilt, ist dies der entartete Kegelschnitt.
Da $$$B^{2} - 4 A C = 0$$$ gilt, stellt die Gleichung zwei parallele Geraden dar.
Antwort
$$$\frac{617}{1000000000000} = \frac{500 x^{2}}{673} - x$$$A stellt das Geradenpaar $$$x = - \frac{-33650000 + \sqrt{1132322502076205}}{50000000}$$$, $$$x = \frac{33650000 + \sqrt{1132322502076205}}{50000000}$$$A dar.
Allgemeine Form: $$$\frac{500 x^{2}}{673} - x - \frac{617}{1000000000000} = 0$$$A.
Faktorisierte Form: $$$\left(50000000 x - 33650000 + \sqrt{1132322502076205}\right) \left(50000000 x - \sqrt{1132322502076205} - 33650000\right) = 0.$$$A
Graph: Siehe den Grafikrechner.