Prime factorization of $$$1079$$$
Your Input
Find the prime factorization of $$$1079$$$.
Solution
Start with the number $$$2$$$.
Determine whether $$$1079$$$ is divisible by $$$2$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$3$$$.
Determine whether $$$1079$$$ is divisible by $$$3$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$5$$$.
Determine whether $$$1079$$$ is divisible by $$$5$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$7$$$.
Determine whether $$$1079$$$ is divisible by $$$7$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$11$$$.
Determine whether $$$1079$$$ is divisible by $$$11$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$13$$$.
Determine whether $$$1079$$$ is divisible by $$$13$$$.
It is divisible, thus, divide $$$1079$$$ by $$${\color{green}13}$$$: $$$\frac{1079}{13} = {\color{red}83}$$$.
The prime number $$${\color{green}83}$$$ has no other factors then $$$1$$$ and $$${\color{green}83}$$$: $$$\frac{83}{83} = {\color{red}1}$$$.
Since we have obtained $$$1$$$, we are done.
Now, just count the number of occurences of the divisors (green numbers), and write down the prime factorization: $$$1079 = 13 \cdot 83$$$.
Answer
The prime factorization is $$$1079 = 13 \cdot 83$$$A.