Descomposición en factores primos de $$$1079$$$
Tu entrada
Halla la descomposición en factores primos de $$$1079$$$.
Solución
Comience con el número $$$2$$$.
Determina si $$$1079$$$ es divisible por $$$2$$$.
Como no es divisible, pase al siguiente número primo.
El siguiente número primo es $$$3$$$.
Determina si $$$1079$$$ es divisible por $$$3$$$.
Como no es divisible, pase al siguiente número primo.
El siguiente número primo es $$$5$$$.
Determina si $$$1079$$$ es divisible por $$$5$$$.
Como no es divisible, pase al siguiente número primo.
El siguiente número primo es $$$7$$$.
Determina si $$$1079$$$ es divisible por $$$7$$$.
Como no es divisible, pase al siguiente número primo.
El siguiente número primo es $$$11$$$.
Determina si $$$1079$$$ es divisible por $$$11$$$.
Como no es divisible, pase al siguiente número primo.
El siguiente número primo es $$$13$$$.
Determina si $$$1079$$$ es divisible por $$$13$$$.
Es divisible, por lo tanto, divide $$$1079$$$ entre $$${\color{green}13}$$$: $$$\frac{1079}{13} = {\color{red}83}$$$.
El número primo $$${\color{green}83}$$$ no tiene otros divisores que $$$1$$$ y $$${\color{green}83}$$$: $$$\frac{83}{83} = {\color{red}1}$$$.
Dado que hemos obtenido $$$1$$$, hemos terminado.
Ahora, simplemente cuenta cuántas veces aparecen los divisores (números verdes) y escribe la descomposición en factores primos: $$$1079 = 13 \cdot 83$$$.
Respuesta
La descomposición en factores primos es $$$1079 = 13 \cdot 83$$$A.