Integral of $$$x^{a}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int x^{a}\, dx$$$.
Solution
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=a$$$:
$${\color{red}{\int{x^{a} d x}}}={\color{red}{\frac{x^{a + 1}}{a + 1}}}={\color{red}{\frac{x^{a + 1}}{a + 1}}}$$
Therefore,
$$\int{x^{a} d x} = \frac{x^{a + 1}}{a + 1}$$
Add the constant of integration:
$$\int{x^{a} d x} = \frac{x^{a + 1}}{a + 1}+C$$
Answer
$$$\int x^{a}\, dx = \frac{x^{a + 1}}{a + 1} + C$$$A
Please try a new game Rotatly