Integral of $$$x e^{\frac{x}{5}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int x e^{\frac{x}{5}}\, dx$$$.
Solution
For the integral $$$\int{x e^{\frac{x}{5}} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Let $$$\operatorname{u}=x$$$ and $$$\operatorname{dv}=e^{\frac{x}{5}} dx$$$.
Then $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{e^{\frac{x}{5}} d x}=5 e^{\frac{x}{5}}$$$ (steps can be seen »).
The integral can be rewritten as
$${\color{red}{\int{x e^{\frac{x}{5}} d x}}}={\color{red}{\left(x \cdot 5 e^{\frac{x}{5}}-\int{5 e^{\frac{x}{5}} \cdot 1 d x}\right)}}={\color{red}{\left(5 x e^{\frac{x}{5}} - \int{5 e^{\frac{x}{5}} d x}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=5$$$ and $$$f{\left(x \right)} = e^{\frac{x}{5}}$$$:
$$5 x e^{\frac{x}{5}} - {\color{red}{\int{5 e^{\frac{x}{5}} d x}}} = 5 x e^{\frac{x}{5}} - {\color{red}{\left(5 \int{e^{\frac{x}{5}} d x}\right)}}$$
Let $$$u=\frac{x}{5}$$$.
Then $$$du=\left(\frac{x}{5}\right)^{\prime }dx = \frac{dx}{5}$$$ (steps can be seen »), and we have that $$$dx = 5 du$$$.
The integral becomes
$$5 x e^{\frac{x}{5}} - 5 {\color{red}{\int{e^{\frac{x}{5}} d x}}} = 5 x e^{\frac{x}{5}} - 5 {\color{red}{\int{5 e^{u} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=5$$$ and $$$f{\left(u \right)} = e^{u}$$$:
$$5 x e^{\frac{x}{5}} - 5 {\color{red}{\int{5 e^{u} d u}}} = 5 x e^{\frac{x}{5}} - 5 {\color{red}{\left(5 \int{e^{u} d u}\right)}}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$$5 x e^{\frac{x}{5}} - 25 {\color{red}{\int{e^{u} d u}}} = 5 x e^{\frac{x}{5}} - 25 {\color{red}{e^{u}}}$$
Recall that $$$u=\frac{x}{5}$$$:
$$5 x e^{\frac{x}{5}} - 25 e^{{\color{red}{u}}} = 5 x e^{\frac{x}{5}} - 25 e^{{\color{red}{\left(\frac{x}{5}\right)}}}$$
Therefore,
$$\int{x e^{\frac{x}{5}} d x} = 5 x e^{\frac{x}{5}} - 25 e^{\frac{x}{5}}$$
Simplify:
$$\int{x e^{\frac{x}{5}} d x} = 5 \left(x - 5\right) e^{\frac{x}{5}}$$
Add the constant of integration:
$$\int{x e^{\frac{x}{5}} d x} = 5 \left(x - 5\right) e^{\frac{x}{5}}+C$$
Answer
$$$\int x e^{\frac{x}{5}}\, dx = 5 \left(x - 5\right) e^{\frac{x}{5}} + C$$$A