Integral of $$$x e^{\frac{x}{5}}$$$

The calculator will find the integral/antiderivative of $$$x e^{\frac{x}{5}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int x e^{\frac{x}{5}}\, dx$$$.

Solution

For the integral $$$\int{x e^{\frac{x}{5}} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Let $$$\operatorname{u}=x$$$ and $$$\operatorname{dv}=e^{\frac{x}{5}} dx$$$.

Then $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{e^{\frac{x}{5}} d x}=5 e^{\frac{x}{5}}$$$ (steps can be seen »).

The integral can be rewritten as

$${\color{red}{\int{x e^{\frac{x}{5}} d x}}}={\color{red}{\left(x \cdot 5 e^{\frac{x}{5}}-\int{5 e^{\frac{x}{5}} \cdot 1 d x}\right)}}={\color{red}{\left(5 x e^{\frac{x}{5}} - \int{5 e^{\frac{x}{5}} d x}\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=5$$$ and $$$f{\left(x \right)} = e^{\frac{x}{5}}$$$:

$$5 x e^{\frac{x}{5}} - {\color{red}{\int{5 e^{\frac{x}{5}} d x}}} = 5 x e^{\frac{x}{5}} - {\color{red}{\left(5 \int{e^{\frac{x}{5}} d x}\right)}}$$

Let $$$u=\frac{x}{5}$$$.

Then $$$du=\left(\frac{x}{5}\right)^{\prime }dx = \frac{dx}{5}$$$ (steps can be seen »), and we have that $$$dx = 5 du$$$.

The integral becomes

$$5 x e^{\frac{x}{5}} - 5 {\color{red}{\int{e^{\frac{x}{5}} d x}}} = 5 x e^{\frac{x}{5}} - 5 {\color{red}{\int{5 e^{u} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=5$$$ and $$$f{\left(u \right)} = e^{u}$$$:

$$5 x e^{\frac{x}{5}} - 5 {\color{red}{\int{5 e^{u} d u}}} = 5 x e^{\frac{x}{5}} - 5 {\color{red}{\left(5 \int{e^{u} d u}\right)}}$$

The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:

$$5 x e^{\frac{x}{5}} - 25 {\color{red}{\int{e^{u} d u}}} = 5 x e^{\frac{x}{5}} - 25 {\color{red}{e^{u}}}$$

Recall that $$$u=\frac{x}{5}$$$:

$$5 x e^{\frac{x}{5}} - 25 e^{{\color{red}{u}}} = 5 x e^{\frac{x}{5}} - 25 e^{{\color{red}{\left(\frac{x}{5}\right)}}}$$

Therefore,

$$\int{x e^{\frac{x}{5}} d x} = 5 x e^{\frac{x}{5}} - 25 e^{\frac{x}{5}}$$

Simplify:

$$\int{x e^{\frac{x}{5}} d x} = 5 \left(x - 5\right) e^{\frac{x}{5}}$$

Add the constant of integration:

$$\int{x e^{\frac{x}{5}} d x} = 5 \left(x - 5\right) e^{\frac{x}{5}}+C$$

Answer

$$$\int x e^{\frac{x}{5}}\, dx = 5 \left(x - 5\right) e^{\frac{x}{5}} + C$$$A


Please try a new game Rotatly