$$$x e^{\frac{x}{5}}$$$ 的积分
您的输入
求$$$\int x e^{\frac{x}{5}}\, dx$$$。
解答
对于积分$$$\int{x e^{\frac{x}{5}} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
设 $$$\operatorname{u}=x$$$ 和 $$$\operatorname{dv}=e^{\frac{x}{5}} dx$$$。
则 $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{e^{\frac{x}{5}} d x}=5 e^{\frac{x}{5}}$$$ (步骤见 »)。
该积分可以改写为
$${\color{red}{\int{x e^{\frac{x}{5}} d x}}}={\color{red}{\left(x \cdot 5 e^{\frac{x}{5}}-\int{5 e^{\frac{x}{5}} \cdot 1 d x}\right)}}={\color{red}{\left(5 x e^{\frac{x}{5}} - \int{5 e^{\frac{x}{5}} d x}\right)}}$$
对 $$$c=5$$$ 和 $$$f{\left(x \right)} = e^{\frac{x}{5}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$5 x e^{\frac{x}{5}} - {\color{red}{\int{5 e^{\frac{x}{5}} d x}}} = 5 x e^{\frac{x}{5}} - {\color{red}{\left(5 \int{e^{\frac{x}{5}} d x}\right)}}$$
设$$$u=\frac{x}{5}$$$。
则$$$du=\left(\frac{x}{5}\right)^{\prime }dx = \frac{dx}{5}$$$ (步骤见»),并有$$$dx = 5 du$$$。
因此,
$$5 x e^{\frac{x}{5}} - 5 {\color{red}{\int{e^{\frac{x}{5}} d x}}} = 5 x e^{\frac{x}{5}} - 5 {\color{red}{\int{5 e^{u} d u}}}$$
对 $$$c=5$$$ 和 $$$f{\left(u \right)} = e^{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$5 x e^{\frac{x}{5}} - 5 {\color{red}{\int{5 e^{u} d u}}} = 5 x e^{\frac{x}{5}} - 5 {\color{red}{\left(5 \int{e^{u} d u}\right)}}$$
指数函数的积分为 $$$\int{e^{u} d u} = e^{u}$$$:
$$5 x e^{\frac{x}{5}} - 25 {\color{red}{\int{e^{u} d u}}} = 5 x e^{\frac{x}{5}} - 25 {\color{red}{e^{u}}}$$
回忆一下 $$$u=\frac{x}{5}$$$:
$$5 x e^{\frac{x}{5}} - 25 e^{{\color{red}{u}}} = 5 x e^{\frac{x}{5}} - 25 e^{{\color{red}{\left(\frac{x}{5}\right)}}}$$
因此,
$$\int{x e^{\frac{x}{5}} d x} = 5 x e^{\frac{x}{5}} - 25 e^{\frac{x}{5}}$$
化简:
$$\int{x e^{\frac{x}{5}} d x} = 5 \left(x - 5\right) e^{\frac{x}{5}}$$
加上积分常数:
$$\int{x e^{\frac{x}{5}} d x} = 5 \left(x - 5\right) e^{\frac{x}{5}}+C$$
答案
$$$\int x e^{\frac{x}{5}}\, dx = 5 \left(x - 5\right) e^{\frac{x}{5}} + C$$$A