$$$x e^{\frac{x}{5}}$$$ 的積分
您的輸入
求$$$\int x e^{\frac{x}{5}}\, dx$$$。
解答
對於積分 $$$\int{x e^{\frac{x}{5}} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
令 $$$\operatorname{u}=x$$$ 與 $$$\operatorname{dv}=e^{\frac{x}{5}} dx$$$。
則 $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{e^{\frac{x}{5}} d x}=5 e^{\frac{x}{5}}$$$(步驟見 »)。
所以,
$${\color{red}{\int{x e^{\frac{x}{5}} d x}}}={\color{red}{\left(x \cdot 5 e^{\frac{x}{5}}-\int{5 e^{\frac{x}{5}} \cdot 1 d x}\right)}}={\color{red}{\left(5 x e^{\frac{x}{5}} - \int{5 e^{\frac{x}{5}} d x}\right)}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=5$$$ 與 $$$f{\left(x \right)} = e^{\frac{x}{5}}$$$:
$$5 x e^{\frac{x}{5}} - {\color{red}{\int{5 e^{\frac{x}{5}} d x}}} = 5 x e^{\frac{x}{5}} - {\color{red}{\left(5 \int{e^{\frac{x}{5}} d x}\right)}}$$
令 $$$u=\frac{x}{5}$$$。
則 $$$du=\left(\frac{x}{5}\right)^{\prime }dx = \frac{dx}{5}$$$ (步驟見»),並可得 $$$dx = 5 du$$$。
該積分變為
$$5 x e^{\frac{x}{5}} - 5 {\color{red}{\int{e^{\frac{x}{5}} d x}}} = 5 x e^{\frac{x}{5}} - 5 {\color{red}{\int{5 e^{u} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=5$$$ 與 $$$f{\left(u \right)} = e^{u}$$$:
$$5 x e^{\frac{x}{5}} - 5 {\color{red}{\int{5 e^{u} d u}}} = 5 x e^{\frac{x}{5}} - 5 {\color{red}{\left(5 \int{e^{u} d u}\right)}}$$
指數函數的積分為 $$$\int{e^{u} d u} = e^{u}$$$:
$$5 x e^{\frac{x}{5}} - 25 {\color{red}{\int{e^{u} d u}}} = 5 x e^{\frac{x}{5}} - 25 {\color{red}{e^{u}}}$$
回顧一下 $$$u=\frac{x}{5}$$$:
$$5 x e^{\frac{x}{5}} - 25 e^{{\color{red}{u}}} = 5 x e^{\frac{x}{5}} - 25 e^{{\color{red}{\left(\frac{x}{5}\right)}}}$$
因此,
$$\int{x e^{\frac{x}{5}} d x} = 5 x e^{\frac{x}{5}} - 25 e^{\frac{x}{5}}$$
化簡:
$$\int{x e^{\frac{x}{5}} d x} = 5 \left(x - 5\right) e^{\frac{x}{5}}$$
加上積分常數:
$$\int{x e^{\frac{x}{5}} d x} = 5 \left(x - 5\right) e^{\frac{x}{5}}+C$$
答案
$$$\int x e^{\frac{x}{5}}\, dx = 5 \left(x - 5\right) e^{\frac{x}{5}} + C$$$A