Integraal van $$$x e^{\frac{x}{5}}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int x e^{\frac{x}{5}}\, dx$$$.
Oplossing
Voor de integraal $$$\int{x e^{\frac{x}{5}} d x}$$$, gebruik partiële integratie $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Zij $$$\operatorname{u}=x$$$ en $$$\operatorname{dv}=e^{\frac{x}{5}} dx$$$.
Dan $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{e^{\frac{x}{5}} d x}=5 e^{\frac{x}{5}}$$$ (de stappen zijn te zien »).
Dus,
$${\color{red}{\int{x e^{\frac{x}{5}} d x}}}={\color{red}{\left(x \cdot 5 e^{\frac{x}{5}}-\int{5 e^{\frac{x}{5}} \cdot 1 d x}\right)}}={\color{red}{\left(5 x e^{\frac{x}{5}} - \int{5 e^{\frac{x}{5}} d x}\right)}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=5$$$ en $$$f{\left(x \right)} = e^{\frac{x}{5}}$$$:
$$5 x e^{\frac{x}{5}} - {\color{red}{\int{5 e^{\frac{x}{5}} d x}}} = 5 x e^{\frac{x}{5}} - {\color{red}{\left(5 \int{e^{\frac{x}{5}} d x}\right)}}$$
Zij $$$u=\frac{x}{5}$$$.
Dan $$$du=\left(\frac{x}{5}\right)^{\prime }dx = \frac{dx}{5}$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = 5 du$$$.
De integraal kan worden herschreven als
$$5 x e^{\frac{x}{5}} - 5 {\color{red}{\int{e^{\frac{x}{5}} d x}}} = 5 x e^{\frac{x}{5}} - 5 {\color{red}{\int{5 e^{u} d u}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=5$$$ en $$$f{\left(u \right)} = e^{u}$$$:
$$5 x e^{\frac{x}{5}} - 5 {\color{red}{\int{5 e^{u} d u}}} = 5 x e^{\frac{x}{5}} - 5 {\color{red}{\left(5 \int{e^{u} d u}\right)}}$$
De integraal van de exponentiële functie is $$$\int{e^{u} d u} = e^{u}$$$:
$$5 x e^{\frac{x}{5}} - 25 {\color{red}{\int{e^{u} d u}}} = 5 x e^{\frac{x}{5}} - 25 {\color{red}{e^{u}}}$$
We herinneren eraan dat $$$u=\frac{x}{5}$$$:
$$5 x e^{\frac{x}{5}} - 25 e^{{\color{red}{u}}} = 5 x e^{\frac{x}{5}} - 25 e^{{\color{red}{\left(\frac{x}{5}\right)}}}$$
Dus,
$$\int{x e^{\frac{x}{5}} d x} = 5 x e^{\frac{x}{5}} - 25 e^{\frac{x}{5}}$$
Vereenvoudig:
$$\int{x e^{\frac{x}{5}} d x} = 5 \left(x - 5\right) e^{\frac{x}{5}}$$
Voeg de integratieconstante toe:
$$\int{x e^{\frac{x}{5}} d x} = 5 \left(x - 5\right) e^{\frac{x}{5}}+C$$
Antwoord
$$$\int x e^{\frac{x}{5}}\, dx = 5 \left(x - 5\right) e^{\frac{x}{5}} + C$$$A