Integral of $$$\sin{\left(\frac{x}{k} \right)}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \sin{\left(\frac{x}{k} \right)}\, dx$$$.
Solution
Let $$$u=\frac{x}{k}$$$.
Then $$$du=\left(\frac{x}{k}\right)^{\prime }dx = \frac{dx}{k}$$$ (steps can be seen »), and we have that $$$dx = k du$$$.
Therefore,
$${\color{red}{\int{\sin{\left(\frac{x}{k} \right)} d x}}} = {\color{red}{\int{k \sin{\left(u \right)} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=k$$$ and $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{k \sin{\left(u \right)} d u}}} = {\color{red}{k \int{\sin{\left(u \right)} d u}}}$$
The integral of the sine is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$k {\color{red}{\int{\sin{\left(u \right)} d u}}} = k {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
Recall that $$$u=\frac{x}{k}$$$:
$$- k \cos{\left({\color{red}{u}} \right)} = - k \cos{\left({\color{red}{\frac{x}{k}}} \right)}$$
Therefore,
$$\int{\sin{\left(\frac{x}{k} \right)} d x} = - k \cos{\left(\frac{x}{k} \right)}$$
Add the constant of integration:
$$\int{\sin{\left(\frac{x}{k} \right)} d x} = - k \cos{\left(\frac{x}{k} \right)}+C$$
Answer
$$$\int \sin{\left(\frac{x}{k} \right)}\, dx = - k \cos{\left(\frac{x}{k} \right)} + C$$$A