Integral dari $$$\sin{\left(\frac{x}{k} \right)}$$$ terhadap $$$x$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \sin{\left(\frac{x}{k} \right)}\, dx$$$.
Solusi
Misalkan $$$u=\frac{x}{k}$$$.
Kemudian $$$du=\left(\frac{x}{k}\right)^{\prime }dx = \frac{dx}{k}$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = k du$$$.
Dengan demikian,
$${\color{red}{\int{\sin{\left(\frac{x}{k} \right)} d x}}} = {\color{red}{\int{k \sin{\left(u \right)} d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=k$$$ dan $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{k \sin{\left(u \right)} d u}}} = {\color{red}{k \int{\sin{\left(u \right)} d u}}}$$
Integral dari sinus adalah $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$k {\color{red}{\int{\sin{\left(u \right)} d u}}} = k {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
Ingat bahwa $$$u=\frac{x}{k}$$$:
$$- k \cos{\left({\color{red}{u}} \right)} = - k \cos{\left({\color{red}{\frac{x}{k}}} \right)}$$
Oleh karena itu,
$$\int{\sin{\left(\frac{x}{k} \right)} d x} = - k \cos{\left(\frac{x}{k} \right)}$$
Tambahkan konstanta integrasi:
$$\int{\sin{\left(\frac{x}{k} \right)} d x} = - k \cos{\left(\frac{x}{k} \right)}+C$$
Jawaban
$$$\int \sin{\left(\frac{x}{k} \right)}\, dx = - k \cos{\left(\frac{x}{k} \right)} + C$$$A