$$$\sin{\left(\frac{x}{k} \right)}$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int \sin{\left(\frac{x}{k} \right)}\, dx$$$。
解答
令 $$$u=\frac{x}{k}$$$。
則 $$$du=\left(\frac{x}{k}\right)^{\prime }dx = \frac{dx}{k}$$$ (步驟見»),並可得 $$$dx = k du$$$。
該積分變為
$${\color{red}{\int{\sin{\left(\frac{x}{k} \right)} d x}}} = {\color{red}{\int{k \sin{\left(u \right)} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=k$$$ 與 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{k \sin{\left(u \right)} d u}}} = {\color{red}{k \int{\sin{\left(u \right)} d u}}}$$
正弦函數的積分為 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$k {\color{red}{\int{\sin{\left(u \right)} d u}}} = k {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
回顧一下 $$$u=\frac{x}{k}$$$:
$$- k \cos{\left({\color{red}{u}} \right)} = - k \cos{\left({\color{red}{\frac{x}{k}}} \right)}$$
因此,
$$\int{\sin{\left(\frac{x}{k} \right)} d x} = - k \cos{\left(\frac{x}{k} \right)}$$
加上積分常數:
$$\int{\sin{\left(\frac{x}{k} \right)} d x} = - k \cos{\left(\frac{x}{k} \right)}+C$$
答案
$$$\int \sin{\left(\frac{x}{k} \right)}\, dx = - k \cos{\left(\frac{x}{k} \right)} + C$$$A