Integraal van $$$\sin{\left(\frac{x}{k} \right)}$$$ met betrekking tot $$$x$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \sin{\left(\frac{x}{k} \right)}\, dx$$$.
Oplossing
Zij $$$u=\frac{x}{k}$$$.
Dan $$$du=\left(\frac{x}{k}\right)^{\prime }dx = \frac{dx}{k}$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = k du$$$.
Dus,
$${\color{red}{\int{\sin{\left(\frac{x}{k} \right)} d x}}} = {\color{red}{\int{k \sin{\left(u \right)} d u}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=k$$$ en $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{k \sin{\left(u \right)} d u}}} = {\color{red}{k \int{\sin{\left(u \right)} d u}}}$$
De integraal van de sinus is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$k {\color{red}{\int{\sin{\left(u \right)} d u}}} = k {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
We herinneren eraan dat $$$u=\frac{x}{k}$$$:
$$- k \cos{\left({\color{red}{u}} \right)} = - k \cos{\left({\color{red}{\frac{x}{k}}} \right)}$$
Dus,
$$\int{\sin{\left(\frac{x}{k} \right)} d x} = - k \cos{\left(\frac{x}{k} \right)}$$
Voeg de integratieconstante toe:
$$\int{\sin{\left(\frac{x}{k} \right)} d x} = - k \cos{\left(\frac{x}{k} \right)}+C$$
Antwoord
$$$\int \sin{\left(\frac{x}{k} \right)}\, dx = - k \cos{\left(\frac{x}{k} \right)} + C$$$A