Integral de $$$\sin{\left(\frac{x}{k} \right)}$$$ em relação a $$$x$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \sin{\left(\frac{x}{k} \right)}\, dx$$$.
Solução
Seja $$$u=\frac{x}{k}$$$.
Então $$$du=\left(\frac{x}{k}\right)^{\prime }dx = \frac{dx}{k}$$$ (veja os passos »), e obtemos $$$dx = k du$$$.
A integral pode ser reescrita como
$${\color{red}{\int{\sin{\left(\frac{x}{k} \right)} d x}}} = {\color{red}{\int{k \sin{\left(u \right)} d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=k$$$ e $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{k \sin{\left(u \right)} d u}}} = {\color{red}{k \int{\sin{\left(u \right)} d u}}}$$
A integral do seno é $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$k {\color{red}{\int{\sin{\left(u \right)} d u}}} = k {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
Recorde que $$$u=\frac{x}{k}$$$:
$$- k \cos{\left({\color{red}{u}} \right)} = - k \cos{\left({\color{red}{\frac{x}{k}}} \right)}$$
Portanto,
$$\int{\sin{\left(\frac{x}{k} \right)} d x} = - k \cos{\left(\frac{x}{k} \right)}$$
Adicione a constante de integração:
$$\int{\sin{\left(\frac{x}{k} \right)} d x} = - k \cos{\left(\frac{x}{k} \right)}+C$$
Resposta
$$$\int \sin{\left(\frac{x}{k} \right)}\, dx = - k \cos{\left(\frac{x}{k} \right)} + C$$$A