Integral of $$$\sec^{4}{\left(\frac{x}{2} \right)}$$$

The calculator will find the integral/antiderivative of $$$\sec^{4}{\left(\frac{x}{2} \right)}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \sec^{4}{\left(\frac{x}{2} \right)}\, dx$$$.

Solution

Let $$$u=\frac{x}{2}$$$.

Then $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (steps can be seen »), and we have that $$$dx = 2 du$$$.

The integral can be rewritten as

$${\color{red}{\int{\sec^{4}{\left(\frac{x}{2} \right)} d x}}} = {\color{red}{\int{2 \sec^{4}{\left(u \right)} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=2$$$ and $$$f{\left(u \right)} = \sec^{4}{\left(u \right)}$$$:

$${\color{red}{\int{2 \sec^{4}{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\sec^{4}{\left(u \right)} d u}\right)}}$$

Strip out two secants and write everything else in terms of the tangent, using the formula $$$\sec^2\left( \alpha \right)=\tan^2\left( \alpha \right) + 1$$$ with $$$\alpha= u $$$:

$$2 {\color{red}{\int{\sec^{4}{\left(u \right)} d u}}} = 2 {\color{red}{\int{\left(\tan^{2}{\left(u \right)} + 1\right) \sec^{2}{\left(u \right)} d u}}}$$

Let $$$v=\tan{\left(u \right)}$$$.

Then $$$dv=\left(\tan{\left(u \right)}\right)^{\prime }du = \sec^{2}{\left(u \right)} du$$$ (steps can be seen »), and we have that $$$\sec^{2}{\left(u \right)} du = dv$$$.

The integral can be rewritten as

$$2 {\color{red}{\int{\left(\tan^{2}{\left(u \right)} + 1\right) \sec^{2}{\left(u \right)} d u}}} = 2 {\color{red}{\int{\left(v^{2} + 1\right)d v}}}$$

Integrate term by term:

$$2 {\color{red}{\int{\left(v^{2} + 1\right)d v}}} = 2 {\color{red}{\left(\int{1 d v} + \int{v^{2} d v}\right)}}$$

Apply the constant rule $$$\int c\, dv = c v$$$ with $$$c=1$$$:

$$2 \int{v^{2} d v} + 2 {\color{red}{\int{1 d v}}} = 2 \int{v^{2} d v} + 2 {\color{red}{v}}$$

Apply the power rule $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:

$$2 v + 2 {\color{red}{\int{v^{2} d v}}}=2 v + 2 {\color{red}{\frac{v^{1 + 2}}{1 + 2}}}=2 v + 2 {\color{red}{\left(\frac{v^{3}}{3}\right)}}$$

Recall that $$$v=\tan{\left(u \right)}$$$:

$$2 {\color{red}{v}} + \frac{2 {\color{red}{v}}^{3}}{3} = 2 {\color{red}{\tan{\left(u \right)}}} + \frac{2 {\color{red}{\tan{\left(u \right)}}}^{3}}{3}$$

Recall that $$$u=\frac{x}{2}$$$:

$$2 \tan{\left({\color{red}{u}} \right)} + \frac{2 \tan^{3}{\left({\color{red}{u}} \right)}}{3} = 2 \tan{\left({\color{red}{\left(\frac{x}{2}\right)}} \right)} + \frac{2 \tan^{3}{\left({\color{red}{\left(\frac{x}{2}\right)}} \right)}}{3}$$

Therefore,

$$\int{\sec^{4}{\left(\frac{x}{2} \right)} d x} = \frac{2 \tan^{3}{\left(\frac{x}{2} \right)}}{3} + 2 \tan{\left(\frac{x}{2} \right)}$$

Simplify:

$$\int{\sec^{4}{\left(\frac{x}{2} \right)} d x} = \frac{2 \left(\tan^{2}{\left(\frac{x}{2} \right)} + 3\right) \tan{\left(\frac{x}{2} \right)}}{3}$$

Add the constant of integration:

$$\int{\sec^{4}{\left(\frac{x}{2} \right)} d x} = \frac{2 \left(\tan^{2}{\left(\frac{x}{2} \right)} + 3\right) \tan{\left(\frac{x}{2} \right)}}{3}+C$$

Answer

$$$\int \sec^{4}{\left(\frac{x}{2} \right)}\, dx = \frac{2 \left(\tan^{2}{\left(\frac{x}{2} \right)} + 3\right) \tan{\left(\frac{x}{2} \right)}}{3} + C$$$A


Please try a new game Rotatly