Integralen av $$$\sec^{4}{\left(\frac{x}{2} \right)}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$\sec^{4}{\left(\frac{x}{2} \right)}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \sec^{4}{\left(\frac{x}{2} \right)}\, dx$$$.

Lösning

Låt $$$u=\frac{x}{2}$$$ vara.

$$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (stegen kan ses »), och vi har att $$$dx = 2 du$$$.

Alltså,

$${\color{red}{\int{\sec^{4}{\left(\frac{x}{2} \right)} d x}}} = {\color{red}{\int{2 \sec^{4}{\left(u \right)} d u}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=2$$$ och $$$f{\left(u \right)} = \sec^{4}{\left(u \right)}$$$:

$${\color{red}{\int{2 \sec^{4}{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\sec^{4}{\left(u \right)} d u}\right)}}$$

Ta ut två sekanter och uttryck resten i termer av tangenten genom att använda formeln $$$\sec^2\left( \alpha \right)=\tan^2\left( \alpha \right) + 1$$$ med $$$\alpha= u $$$:

$$2 {\color{red}{\int{\sec^{4}{\left(u \right)} d u}}} = 2 {\color{red}{\int{\left(\tan^{2}{\left(u \right)} + 1\right) \sec^{2}{\left(u \right)} d u}}}$$

Låt $$$v=\tan{\left(u \right)}$$$ vara.

$$$dv=\left(\tan{\left(u \right)}\right)^{\prime }du = \sec^{2}{\left(u \right)} du$$$ (stegen kan ses »), och vi har att $$$\sec^{2}{\left(u \right)} du = dv$$$.

Alltså,

$$2 {\color{red}{\int{\left(\tan^{2}{\left(u \right)} + 1\right) \sec^{2}{\left(u \right)} d u}}} = 2 {\color{red}{\int{\left(v^{2} + 1\right)d v}}}$$

Integrera termvis:

$$2 {\color{red}{\int{\left(v^{2} + 1\right)d v}}} = 2 {\color{red}{\left(\int{1 d v} + \int{v^{2} d v}\right)}}$$

Tillämpa konstantregeln $$$\int c\, dv = c v$$$ med $$$c=1$$$:

$$2 \int{v^{2} d v} + 2 {\color{red}{\int{1 d v}}} = 2 \int{v^{2} d v} + 2 {\color{red}{v}}$$

Tillämpa potensregeln $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=2$$$:

$$2 v + 2 {\color{red}{\int{v^{2} d v}}}=2 v + 2 {\color{red}{\frac{v^{1 + 2}}{1 + 2}}}=2 v + 2 {\color{red}{\left(\frac{v^{3}}{3}\right)}}$$

Kom ihåg att $$$v=\tan{\left(u \right)}$$$:

$$2 {\color{red}{v}} + \frac{2 {\color{red}{v}}^{3}}{3} = 2 {\color{red}{\tan{\left(u \right)}}} + \frac{2 {\color{red}{\tan{\left(u \right)}}}^{3}}{3}$$

Kom ihåg att $$$u=\frac{x}{2}$$$:

$$2 \tan{\left({\color{red}{u}} \right)} + \frac{2 \tan^{3}{\left({\color{red}{u}} \right)}}{3} = 2 \tan{\left({\color{red}{\left(\frac{x}{2}\right)}} \right)} + \frac{2 \tan^{3}{\left({\color{red}{\left(\frac{x}{2}\right)}} \right)}}{3}$$

Alltså,

$$\int{\sec^{4}{\left(\frac{x}{2} \right)} d x} = \frac{2 \tan^{3}{\left(\frac{x}{2} \right)}}{3} + 2 \tan{\left(\frac{x}{2} \right)}$$

Förenkla:

$$\int{\sec^{4}{\left(\frac{x}{2} \right)} d x} = \frac{2 \left(\tan^{2}{\left(\frac{x}{2} \right)} + 3\right) \tan{\left(\frac{x}{2} \right)}}{3}$$

Lägg till integrationskonstanten:

$$\int{\sec^{4}{\left(\frac{x}{2} \right)} d x} = \frac{2 \left(\tan^{2}{\left(\frac{x}{2} \right)} + 3\right) \tan{\left(\frac{x}{2} \right)}}{3}+C$$

Svar

$$$\int \sec^{4}{\left(\frac{x}{2} \right)}\, dx = \frac{2 \left(\tan^{2}{\left(\frac{x}{2} \right)} + 3\right) \tan{\left(\frac{x}{2} \right)}}{3} + C$$$A


Please try a new game Rotatly