Intégrale de $$$\sec^{4}{\left(\frac{x}{2} \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \sec^{4}{\left(\frac{x}{2} \right)}\, dx$$$.
Solution
Soit $$$u=\frac{x}{2}$$$.
Alors $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = 2 du$$$.
L’intégrale devient
$${\color{red}{\int{\sec^{4}{\left(\frac{x}{2} \right)} d x}}} = {\color{red}{\int{2 \sec^{4}{\left(u \right)} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=2$$$ et $$$f{\left(u \right)} = \sec^{4}{\left(u \right)}$$$ :
$${\color{red}{\int{2 \sec^{4}{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\sec^{4}{\left(u \right)} d u}\right)}}$$
Isolez deux sécantes et exprimez tout le reste en fonction de la tangente, en utilisant la formule $$$\sec^2\left( \alpha \right)=\tan^2\left( \alpha \right) + 1$$$ avec $$$\alpha= u $$$:
$$2 {\color{red}{\int{\sec^{4}{\left(u \right)} d u}}} = 2 {\color{red}{\int{\left(\tan^{2}{\left(u \right)} + 1\right) \sec^{2}{\left(u \right)} d u}}}$$
Soit $$$v=\tan{\left(u \right)}$$$.
Alors $$$dv=\left(\tan{\left(u \right)}\right)^{\prime }du = \sec^{2}{\left(u \right)} du$$$ (les étapes peuvent être vues »), et nous obtenons $$$\sec^{2}{\left(u \right)} du = dv$$$.
L’intégrale peut être réécrite sous la forme
$$2 {\color{red}{\int{\left(\tan^{2}{\left(u \right)} + 1\right) \sec^{2}{\left(u \right)} d u}}} = 2 {\color{red}{\int{\left(v^{2} + 1\right)d v}}}$$
Intégrez terme à terme:
$$2 {\color{red}{\int{\left(v^{2} + 1\right)d v}}} = 2 {\color{red}{\left(\int{1 d v} + \int{v^{2} d v}\right)}}$$
Appliquez la règle de la constante $$$\int c\, dv = c v$$$ avec $$$c=1$$$:
$$2 \int{v^{2} d v} + 2 {\color{red}{\int{1 d v}}} = 2 \int{v^{2} d v} + 2 {\color{red}{v}}$$
Appliquer la règle de puissance $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=2$$$ :
$$2 v + 2 {\color{red}{\int{v^{2} d v}}}=2 v + 2 {\color{red}{\frac{v^{1 + 2}}{1 + 2}}}=2 v + 2 {\color{red}{\left(\frac{v^{3}}{3}\right)}}$$
Rappelons que $$$v=\tan{\left(u \right)}$$$ :
$$2 {\color{red}{v}} + \frac{2 {\color{red}{v}}^{3}}{3} = 2 {\color{red}{\tan{\left(u \right)}}} + \frac{2 {\color{red}{\tan{\left(u \right)}}}^{3}}{3}$$
Rappelons que $$$u=\frac{x}{2}$$$ :
$$2 \tan{\left({\color{red}{u}} \right)} + \frac{2 \tan^{3}{\left({\color{red}{u}} \right)}}{3} = 2 \tan{\left({\color{red}{\left(\frac{x}{2}\right)}} \right)} + \frac{2 \tan^{3}{\left({\color{red}{\left(\frac{x}{2}\right)}} \right)}}{3}$$
Par conséquent,
$$\int{\sec^{4}{\left(\frac{x}{2} \right)} d x} = \frac{2 \tan^{3}{\left(\frac{x}{2} \right)}}{3} + 2 \tan{\left(\frac{x}{2} \right)}$$
Simplifier:
$$\int{\sec^{4}{\left(\frac{x}{2} \right)} d x} = \frac{2 \left(\tan^{2}{\left(\frac{x}{2} \right)} + 3\right) \tan{\left(\frac{x}{2} \right)}}{3}$$
Ajouter la constante d'intégration :
$$\int{\sec^{4}{\left(\frac{x}{2} \right)} d x} = \frac{2 \left(\tan^{2}{\left(\frac{x}{2} \right)} + 3\right) \tan{\left(\frac{x}{2} \right)}}{3}+C$$
Réponse
$$$\int \sec^{4}{\left(\frac{x}{2} \right)}\, dx = \frac{2 \left(\tan^{2}{\left(\frac{x}{2} \right)} + 3\right) \tan{\left(\frac{x}{2} \right)}}{3} + C$$$A