$$$\sec^{4}{\left(\frac{x}{2} \right)}$$$ 的積分
您的輸入
求$$$\int \sec^{4}{\left(\frac{x}{2} \right)}\, dx$$$。
解答
令 $$$u=\frac{x}{2}$$$。
則 $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (步驟見»),並可得 $$$dx = 2 du$$$。
因此,
$${\color{red}{\int{\sec^{4}{\left(\frac{x}{2} \right)} d x}}} = {\color{red}{\int{2 \sec^{4}{\left(u \right)} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=2$$$ 與 $$$f{\left(u \right)} = \sec^{4}{\left(u \right)}$$$:
$${\color{red}{\int{2 \sec^{4}{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\sec^{4}{\left(u \right)} d u}\right)}}$$
提出兩個正割,並使用公式 $$$\sec^2\left( \alpha \right)=\tan^2\left( \alpha \right) + 1$$$(其中 $$$\alpha= u $$$),將其餘全部用正切表示:
$$2 {\color{red}{\int{\sec^{4}{\left(u \right)} d u}}} = 2 {\color{red}{\int{\left(\tan^{2}{\left(u \right)} + 1\right) \sec^{2}{\left(u \right)} d u}}}$$
令 $$$v=\tan{\left(u \right)}$$$。
則 $$$dv=\left(\tan{\left(u \right)}\right)^{\prime }du = \sec^{2}{\left(u \right)} du$$$ (步驟見»),並可得 $$$\sec^{2}{\left(u \right)} du = dv$$$。
因此,
$$2 {\color{red}{\int{\left(\tan^{2}{\left(u \right)} + 1\right) \sec^{2}{\left(u \right)} d u}}} = 2 {\color{red}{\int{\left(v^{2} + 1\right)d v}}}$$
逐項積分:
$$2 {\color{red}{\int{\left(v^{2} + 1\right)d v}}} = 2 {\color{red}{\left(\int{1 d v} + \int{v^{2} d v}\right)}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, dv = c v$$$:
$$2 \int{v^{2} d v} + 2 {\color{red}{\int{1 d v}}} = 2 \int{v^{2} d v} + 2 {\color{red}{v}}$$
套用冪次法則 $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$:
$$2 v + 2 {\color{red}{\int{v^{2} d v}}}=2 v + 2 {\color{red}{\frac{v^{1 + 2}}{1 + 2}}}=2 v + 2 {\color{red}{\left(\frac{v^{3}}{3}\right)}}$$
回顧一下 $$$v=\tan{\left(u \right)}$$$:
$$2 {\color{red}{v}} + \frac{2 {\color{red}{v}}^{3}}{3} = 2 {\color{red}{\tan{\left(u \right)}}} + \frac{2 {\color{red}{\tan{\left(u \right)}}}^{3}}{3}$$
回顧一下 $$$u=\frac{x}{2}$$$:
$$2 \tan{\left({\color{red}{u}} \right)} + \frac{2 \tan^{3}{\left({\color{red}{u}} \right)}}{3} = 2 \tan{\left({\color{red}{\left(\frac{x}{2}\right)}} \right)} + \frac{2 \tan^{3}{\left({\color{red}{\left(\frac{x}{2}\right)}} \right)}}{3}$$
因此,
$$\int{\sec^{4}{\left(\frac{x}{2} \right)} d x} = \frac{2 \tan^{3}{\left(\frac{x}{2} \right)}}{3} + 2 \tan{\left(\frac{x}{2} \right)}$$
化簡:
$$\int{\sec^{4}{\left(\frac{x}{2} \right)} d x} = \frac{2 \left(\tan^{2}{\left(\frac{x}{2} \right)} + 3\right) \tan{\left(\frac{x}{2} \right)}}{3}$$
加上積分常數:
$$\int{\sec^{4}{\left(\frac{x}{2} \right)} d x} = \frac{2 \left(\tan^{2}{\left(\frac{x}{2} \right)} + 3\right) \tan{\left(\frac{x}{2} \right)}}{3}+C$$
答案
$$$\int \sec^{4}{\left(\frac{x}{2} \right)}\, dx = \frac{2 \left(\tan^{2}{\left(\frac{x}{2} \right)} + 3\right) \tan{\left(\frac{x}{2} \right)}}{3} + C$$$A